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Abstract

In the design of modern accelerators, an accurate estimate of coupling impedance

is very important. The sources which give rise to coupling impedance are the geo-

metric discontinuities in the accelerator beam pipe. In various discontinuities such

as RF cavities, bellows, and collimators, the coupling impedance of the holes has not

been well understood. Although coupling impedance can be obtained in general from

the Fourier transform of the corresponding wake potential which may be obtained

numerically, this is time consuming and requires a large amount of computer storage

when applied to a small dimension of a discontinuity in a typical beam pipe, often

imposing a fundamental limitation of the numerical approach. It is especially true

for the holes since the typical size of a hole is small compared with the dimension

of a typical beam pipe. More fundamentally, however, numerical calculation does

not have the predictive power because of limited understanding of how the coupling

impedance of a hole should behave over a wide frequency range. This question was

studied by developing a theoretical analysis based on a variational method.

An analytical formula for the coupling impedance of a hole is developed in this

work using a variational method. The result gives good qualitative agreements with

the coupling impedances evaluated numerically from the Fourier transform of the

wake potential which is obtained from the computer code MAFIA-T3. We show

that the coupling impedance of a hole behaves quite similar to the impedance of

an RLC-resonator circuit. Important parameters used to describe such a resonator

circuit are the resonant frequency and bandwidth. These parameters can be easily

determined from the formula presented in this work. We provide a theoretical insight

on how to parameterize properly the numerical impedance of a hole when data exhibit
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complicated dependence on frequency. This is possible because we can show that the

parameters are a function of the dimensionless quantity kd alone, with k the free-space

wave number and d the radius of hole.

In summary, we will develop an analytical method for the hole-coupling problem

valid for a wide range of frequencies.
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Chapter 1

Introduction

1.1 Introductory Remarks

In a circular accelerator, a charged particle gains energy from the electromagnetic

�eld in RF cavities. In electron storage rings, RF power should compensate the

synchrotron radiation loss experienced by the charged particle. While an accelerator

is designed such that particles execute a stable longitudinal oscillation in the potential

well provided by the RF system, they should be stable in the transverse directions as

well. For transverse motion, the interaction is between the charged particle and the

external magnetic �eld which provides the transverse focusing force. Since both RF

�elds and magnetic �elds are supplied by the system external to particles, the motion

in such a �eld does not depend on the intensity of the beam. Hence we may call this

type of motion single particle dynamics in contrast to a collective motion which is

a�ected by the beam intensity also.

When an accelerator beam pipe is smooth everywhere, single particle dynamics

alone is su�cient in understanding the behavior of the beam inside an accelerator.

In general, however, an accelerator beam pipe is not smooth but discontinuous in

its dimension. An obvious discontinuity in a beam pipe is the RF cavities. Other
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examples may include bellows, collimators, and pumping holes. Such unavoidable

discontinuities in an accelerator beam pipe provide rich sources of interaction be-

tween the beam and the surroundings in such a way that, when the beam traverses a

discontinuity, say, an RF cavity, the source �eld associated with the beam is scattered

leaving the wake �eld behind the beam. The wake �eld then acts on the following

bunch of particles or acts on the original beam itself. This self-sustained mechanism is

continued either leading to a stable or to an unstable situation. Since the interaction

depends on the intensity of beam, the dynamics of the system is often dominated by

the so-called \collective e�ects."

In modern accelerators or storage rings, the maximum achievable current is lim-

ited by the collective e�ects. In the equation of motion which characterizes the col-

lective e�ects, the concept of wake potential and its frequency domain counterpart,

coupling impedance, have been introduced, providing a coherent force in the equa-

tion of motion. Thus, in designing high-intensity accelerators and storage rings, one

tries to minimize the collective e�ects by reducing the wake potential or the coupling

impedance, and this is the subject of the present work.

1.2 De�nition of LongitudinalWake Potential and

Coupling Impedance

In this section we introduce the de�nition of longitudinal wake potential and coupling

impedance. Even though mathematically rigorous theorems can be found in the

standard literature [7], we emphasize the heuristic concept evolved over many years

in accelerator physics. Once the concept of longitudinal wake potential becomes clear,

extension to the transverse wake potential is straightforward.
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Figure 1.1: Leading (driving) and trailing (test) charges in a pill-box cavity with axial
symmetry.

Let us consider two charges, q1 and q2, traveling with constant velocity on the axis

of an axially symmetric structure. At time t = 0, the position of leading charge is

de�ned as z1 = 0. At time t, leading and trailing charges have coordinates z1(t) = vt

and z2(t) = v(t� � ), where � is the time delay of the trailing charge (see Fig. 1.1).

Since the wake �eld excited by q1 exerts the Lorentz force on the trailing charge,

the trailing charge experiences the energy change by an amount

�U = �q2
Z 1

�1
Ez

�
z; t =

z

v
+ �

�
dz; (1:1)

where the electric �eld is computed at a later time and the unit is [Volt Coulomb].

We de�ne the wake potential W (� ) as the energy lost by the trailing charge per

unit of both charges q1 and q2 which can be expressed in the form

W (� ) =
�U

q1q2
= � 1

q1

Z 1

�1
Ez

�
z; t =

z

v
+ �

�
dz (1:2)

3



with the unit of [Volt/Coulomb].

Once the response to a point driving charge q1 is calculated, the wake potential

W (� ) can be used as Green's function to compute the potential in and behind an

arbitrary charge distribution by means of the superposition principle. If the charge

q1 is continuously distributed according to the time distribution function I(� ) such

that

q1 =
Z 1

�1
I(� )d�; (1:3)

the trailing charge experiences the e�ect due to a bunch distribution

V (� ) =
Z 1

�1
W (� � � 0)I(� 0)d� 0 (1:4)

with the unit of [Volt]. The potential in Eq. (1.4) is sometimes called bunch potential.

Since bunch potential depends on the distribution of charges, wake potential is a more

fundamental quantity as it depends only on the structure surrounding a charge.

If we take the Fourier transform of Eq. (1.4), we have a response relation in the

frequency domain such that

Z(!) = W (!) =
V (!)

I(!)
; (1:5)

where W (!), a Fourier transform of wake potential, is de�ned as

W (!) =
Z 1

�1
W (� )e�j!�d�: (1:6)

Since the quantity Z(!) is the ratio of voltage and current, it will be called impedance

or coupling impedance with [Ohm] as its unit.

For the calculation of bunch potential, general-purpose computer codes exist:

TBCI [31] for axially symmetric geometries and MAFIA-T3 [17] for three-dimensional
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geometries. Although direct numerical calculation of wake potential is impossible be-

cause of the �nite size of the mesh used in these codes, we can obtain the impedance

via Eq. (1.5) from the discrete bunch potential. For the analytic calculation, however,

it would be much easier to work directly in the frequency domain, noting that

Z(k) = � 1

I0

Z 1

�1
Ez(z; k)e

jkzdz; (1:7)

where k = !=v is the wave number, I0 = q1v is the dc current and the time dependence

is assumed to be exp(j!t). This de�nition requires the �eld everywhere along the

beam axis or along the gap if the structure is a cavity type. It should be noted also

that the �eld integral in Eq. (1.7) is the e�ective voltage, including the transit time

factor, experienced by the charge traversing RF cavity.

Since the drive current in the frequency domain has a sinusoidal dependence on z

of the form

J(x; y; z; k) = I0�(x)�(y)e
�jkzez; (1:8)

we can express Eq. (1.7) as

Z(k) = � 1

jI0j2
Z 1

�1
E � J�dV: (1:9)

In this form, coupling impedance used in the accelerator physics is equal to the input

impedance of the source which excites the waveguide or cavity.

It will be shown in the next section that Eq. (1.9) is more convenient for a certain

geometry, especially for a hole problem.
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1.3 Aperture Problem and Gluckstern's Formal-

ism

Maintaining a high vacuum in a storage ring is essential for a useful beam lifetime

which is typically many hours. Since the residual gas must be pumped out of the

beam pipe, pumping holes are distributed around the ring for the passage of residual

gas. Although the arrangement of pumping holes is di�erent in di�erent accelerators,

the impedance of even a single hole is not a well-known quantity.

Numerical calculation using computer codes for the wake potential is possible but

it will be time consuming since

1. the geometry describing a beam pipe with holes is three dimensional,

2. a large amount of computer storage will be required because the computation

will need a �ne mesh in order to resolve the 1 or 2 mm thickness of the hole-plate,

3. it is always di�cult to obtain the impedance in the high frequency range because

errors in the Fourier transformation are ampli�ed in the convolution de�ned in

Eq (1.5).

Finding an analytic expression for the impedance of a hole in a broad frequency range

is therefore highly desirable in the design of high intensity storage rings.

Among many di�erent ways of calculating impedance, Gluckstern's formalism

[10, 11, 12] is particularly useful, and is introduced in this section. Let us consider

two axially symmetric beam pipes, one without a hole and the other with a hole

shown in Fig. 1.2. If we denote the �eld in the smooth beam pipe as E1, H1, which

is the source �eld, and the �eld in the beam pipe with a hole as E2, H2, which is the
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source �eld plus scattered �eld due to a hole, they satisfy Maxwell's equations in the

form

r�E1;2 = �j!�H1;2 ;r�H1;2 = j!�H1;2 + J; (1:10)

where J = I0�(x)�(y)e�jkz ez is the complex current density and k = !
p
�0�0 is the

free-space wave number. Assuming that the velocity of traveling charge is ultrarela-

tivistic (� = v=c ' 1, 
 = 1=
p
1� �2 � 1, which is assumed throughout), and using

a well-known result of the impedance due to the source �eld

Z1(k) = �constant� j


2
; (1:11)

we can construct

jI0j2[Z2(k) + Z�
1 (k)] = jI0j2[Z2(k)� Z1(k)] = �

Z
[E2 � J� +E�

1 � J]dV: (1:12)

Noting the identity r � (E�
1 �H2 + E2 �H�

1) = �(E2 � J� + E�
1 � J), we convert the

volume integral into the surface integral, leading to

jI0j2Z2(k) =
Z
n � [E2 �H�

1 +E�
1 �H2]dS; (1:13)

where we used the fact that Z1(k) vanishes in the ultrarelativistic limit. If we choose

S to be the inside surface of the beam pipe, n �E�
1 �H2 = 0, we have

jI0j2Z2(k) =
Z
hole

(n�E2) �H�
1; (1:14)

where n�E2 is the tangential �eld inside the hole, a quantity unknown until we solve

the problem completely.

Determining the �eld inside hole has been an important subject of investigation

for a long time. Several hundred papers have been published on this subject, and
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Figure 1.2: (a) A charge traveling in the smooth beam pipe, (b) a charge traveling in
the beam pipe with a hole.

an excellent review paper was written by Bouwkamp in 1954 [4]. Among the large

amount of literature available, Schelkuno�'s Field Equivalence Theorems [26], Levine

and Schwinger's variational formalism using dyadic Green's function [21], and Rum-

sey's Reaction Concept [23] are particularly useful for our problem. These works are

summarized in Chapter 2.

1.4 Goal and Scope of the Work

Obtaining an analytical estimate of longitudinal coupling impedance of a hole is the

main goal of this work. Since the exact solution is hard to obtain, we try to �nd

an approximate solution based on a variational principle. This approximate solution

should be valid in a wide frequency range.

As mentioned in the previous section, a hole cut in the surface imposes a funda-

mental problem in vector di�raction theory. Relevant theorems and formalism for our

impedance problem are summarized in Chapter 2. In Chapter 3, the most important
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in the dissertation, we apply di�raction theorems to a particularly simple geometry,

namely, a hole in an in�nitely 
at screen. Although accelerator beam pipe is torus in

shape with circular, elliptical, or rectangular cross section, we consider the beam pipe

with rectangular cross section because other shapes raise the question of curvature

e�ect of a hole which is not essential to our problem. Analytic results and comparison

with numerical estimates are presented in Chapter 4. Conclusions and suggestions

for a further investigation are presented in Chapter 5.
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Chapter 2

Vector Di�raction Theory

2.1 Introduction

The di�raction problem deals with the interaction between waves of �nite wavelengths

and obstacles. A geometric theory describing the di�raction pattern was developed

by Huygens and Fresenel whose idea was put forward in the mathematical form by

Kirchho�. Kirchho�'s scalar di�raction theory is based on the integral equation

whose solution is in general impossible to �nd, and hence subject to the various

approximations for solutions. When Kirchho� applied his formula to the problem of

di�raction by the black (or opaque) screen with an aperture in it, he assumed that

[16]:

1. A �eld function ( ) and its normal derivative (@ 
@n
) on the screen vanish except

in the aperture.

2. The values of  and @ 
@n

in the aperture are equal to the values of the incident

waves in the absence of any screen or obstacles.

It is these approximations that contain mathematical inconsistencies and physical

de�ciencies and not the Kirchho� integral equation itself [2].
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Since Kirchho�'s integral equation is based on the scalar Green's function, it does

not satisfy Maxwell's equations in general. A vector analog of Kirchho�'s integral

equation was developed by Stratton and Chu [27] which requires not only the tan-

gential electric and magnetic �elds but also the normal electric �elds on the entire

boundary surface surrounding the region of interest where the �elds are to be com-

puted. The choice of vector Green's function is rather arbitrary. The proper choice

of Green's function will remove the normal electric �elds from the integral equation

[22].

Green's function, which relates the vector �elds and the vector sources, should

be in general dyadic or tensor quantity. In particular, when we want to compute

the �elds directly by solving vector wave equations for �elds instead of resorting to

the use of vector potential, the dyadic Green's function has a considerable advantage

over a vector Green's function in simplifying the notation. Levine and Schwinger

[21] used the dyadic notation on the theory of electromagnetic wave di�raction by

an aperture in an in�nite plane conducting screen. Employing variational principles,

they calculated the transmission coe�cient with a great accuracy comparable to the

rigorous solution obtained by solving partial di�erential equations analytically. This

is the motivation for using the dyadic Green's function throughout our work.

In Section 2.2, we explain the �eld equivalence principle which is helpful in under-

standing the physics involved in the di�raction phenomena. The brief introduction

of dyadic Green's function which will be used later is laid out in Sections 2.3 and

2.4. The �eld equivalence principle will emerge as a natural part of the theory of

dyadic Green's function. In Section 2.5, we introduce the Rumsey's reaction concept

which not only simpli�es the notation but also proves to be useful in deriving the
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variational formula for various quantities of interest. In Section 2.6, we calculate the

transmission coe�cient of a plane wave incident on the in�nite plane with an aperture

using all the concepts and formalisms laid out in the previous sections.

2.2 Field Equivalence Principle

Various �eld equivalence principles provide di�erent ways of formulating a boundary-

value problem [9, 14, 24, 25, 26]. As an example, consider a solution of Poisson's

equation in electrostatic problems. The region V surrounded by the surface S con-

tains no charge. Applying Green's theorem, one can determine uniquely the potential

in the region V due to the charge distribution external to S by specifying a surface

charge and a dipole layer density on the surface S. This illustrates one form of equiva-

lence principle, for we replaced the original volume source with the equivalent surface

sources on the mathematical boundary.

A simple application of the equivalence principle for the time-varying electro-

magnetic �elds is illustrated in Fig. 2.1. The sources for an electromagnetic �eld are

contained in a volume V1 bounded by a smooth closed surface S as shown in Fig. 2.1a.

Suppose we only need to evaluate the �elds in the region V bounded by both the sur-

face S and the surface at in�nity S1. For this purpose, assume the original �eld in

V and the null �eld in V1 as shown in Fig. 2.1b. Since the �elds change discontinu-

ously across S in Fig. 2.1b, there must exist surface currents to satisfy the boundary

conditions:

J = H� n; Jm = n�E;

where J and Jm denote the electric and magnetic currents respectively, and n is the

unit vector outwardly normal from the region where the �elds are to be calculated.
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(This convention is used for the direction of unit normal vector throughout this work.)

The integrated e�ect of these surface currents will uniquely determine the �eld in the

region V. This is called Love's �eld equivalence principle. Evidently this does not make

the problem any easier to solve since we do not know the equivalent surface currents

until the problem is solved. Since we know that the �eld can be uniquely determined

by the tangential components of E-�eld or H-�eld on the surface alone [28], we

may modify Love's �eld equivalence principle such that it requires only magnetic

(tangential E) or electric currents (tangential H).

Since the �eld in the region V1 is zero, we may place a perfect electric conduc-

tor over S without a�ecting the �eld in V1. Over this conducting surface we have

equivalent current source J and Jm. The tangential E-�eld reduces to zero on the

conductor surface which crosses the magnetic current sheet, and the insertion of con-

ductor does not a�ect the �eld in the region V due to Jm. It can be shown also that

an electric current just in front of an electric conductor produces a null �eld [9]. The

�eld in the region V is then uniquely determined by the magnetic surface current

(tangential E) adjacent to the perfect electric conductor whose surface coincides with

the S. In Green's function technique, this is equivalent to �nding Green's function

to satisfy the boundary conditions for the perfect electric conductor. Similarly, if we

place the perfect magnetic conductor on S, we only need the electric surface currents

(tangential H) to determine the �eld uniquely in the region V . This modi�cation

to Love's �eld equivalence principle is called Schelkuno�'s �eld equivalence principle

and is illustrated in Fig. 2.2.

13



source
S

V

E, H

E, H

V1

n Zero Field

E, H

V

S

V1

n

J = H x n 
Jm = n x E

(a) (b)

Figure 2.1: Illustration of Love's �eld equivalence principle. (a) Original problem;
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(a) (b)

S

V

E, H

V1

n

Jm = n x E

Zero Field

Electric
Conductor

Zero Field

E, H

V

S

V1

n

J = H x n 

Magnetic
Conductor

Figure 2.2: Illustration of Schelkuno�'s �eld equivalence principle. (a) magnetic
current over electric conductor; (b) electric current over magnetic conductor.
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2.3 Free-Space Dyadic Green's Function

Maxwell's equations in the phasor form are

r�E+ j!�H = �Jm; (2.1)

r�H� j!�E = J; (2.2)

r �H = �m=�; (2.3)

r �E = �=�: (2.4)

It is assumed that all quantities vary as ej!t. Quantities Jm and �m are densities of

magnetic current and magnetic charge, respectively. Currents and charges are related

by the equation of continuity,

r � J+ j!� = 0; (2.5)

r � Jm + j!�m = 0: (2.6)

The vector wave equation for E is obtained by taking curl of curlE resulting in

r�r�E� k2E = �j!�J�r� Jm; (2:7)

where k2 = !2��. In a similar fashion we �nd that H is a solution of

r�r�H� k2H = �j!�Jm +r� J: (2:8)

We can derive either Eq. (2.7) or (2.8) from the other using the substitutions E! H,

H!�E, J! Jm, Jm ! �J, and �$ �.

Both E and H �elds satisfy the linear vector equation in the form

Lf = g: (2:9)
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We �rst note that, in general, the solution cannot be expressed in terms of a single

scalar Green's function, as, for example,

f(r) =
Z
V
G(rjr0)g(r0)dV 0:

Such a relationship implies that the source g(r0) everywhere parallel to the x axis

generates �eld f(r) parallel to the same axis. This is true for the relationship be-

tween the current source and the magnetic vector potential but not for the �elds. It

is therefore necessary to use nine scalar Green's functions to express the three com-

ponents of f(r) in terms of three components of the source g(r0). One of such nine

scalar Green's functions, Gxy(rjr0), measures the x-component of the �eld at r due to

a unit y-directed source at r0.

Thus the equations for f(r) can be written as [6]

f(r) =
Z
(Gxex � g +Gyey � g +Gzez � g)dV 0 =

Z
G � gdV 0; (2:10)

where G is the dyadic Green's function de�ned as

G = Gxex +Gyey +Gzez: (2:11)

(In this work, bold characters are used to denote vectors and bold characters with

a bar to denote dyadic quantities.) The G's are the column vector of the dyadic

Green's function G, for example, as

Gx = Gxxex +Gyxey +Gzxez: (2:12)

In the matrix notation, Eq. (2.10) may be rewritten as2
64 dfxdfy
dfz

3
75 =

2
64 Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

3
75
2
64 dgx
dgy
dgz

3
75 ; (2:13)
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or in the tensor notation,

fi =
Z
GijgjdV

0: (2:14)

Consider the vector wave equation for E in the free space excited by the electric

current,

r�r�E� k2E = �j!�J: (2:15)

The dyadic Green's function of electric type is de�ned as a solution of

r�r�Ge � k2Ge = I�(r� r0); (2:16)

where I is the unit dyadic de�ned as

I = exex + eyey + ezez: (2:17)

Subscript e of Ge denotes the Green's function of electric type. We do not impose

any boundary conditions on Ge except that it should satisfy the radiation condition

at in�nity.

Following Levine and Schwinger [21], we transform Eq. (2.16) to the vector Helmholtz

wave equation form. A vector identity

r�r� = rr � �r2;

can be used to obtain

(r2 + k2)Ge(rjr0) = �(I+ 1

k2
rr)�(r� r0): (2:18)

Since we know that, in free space, the scalar Green's function G(rjr0) obeys the

relation

(r2 + k2)G(rjr0) = ��(r� r0); (2:19)
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the corresponding dyadic Green's function should be in the form

Ge(rjr0) = (I+
1

k2
rr)G: (2:20)

The scalar Green's function satisfying the radiation condition is well known as

G(rjr0) = G(R) =
e�jkR

4�R
; (2:21)

where R = jRj = jr � r0j is the distance between the source point r0 and the �eld

point r. Thus, the dyadic Green's function is

Ge(rjr0) = (I+
1

k2
rr)e

�jkR

4�R
: (2:22)

The hierarchy of the above dyadic Green's function becomes clear by constructing

an explicit coordinate-free form [8]. In order to do that we will use the following

relationships

rR = R̂ (2.23)

rR̂ =
1

R
(I� R̂R̂); (2.24)

where R = r� r0 and R̂ = R=R.

Using the chain rule that if f(u) is a function of u, and u is a function of r, we

have

rf =
df

du
ru:

With the aid of the above relations, we obtain

re
�jkR

R
= �

�
jk +

1

R

�
e�jkR

R
R̂; (2:25)

and

rre
�jkR

R
=

"
�
 
jk

R
+

2

R2

!
(I� 3R̂R̂)� k2R̂R̂

#
e�jkR

R
: (2:26)
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Substituting Eq. (2.26) into Eq. (2.22), we �nally obtain

Ge(rjr0) = (I� R̂R̂)G(R) � j

kR
(I� 3R̂R̂)G(R) � 1

k2R2
(I� 3R̂R̂)G(R): (2:27)

The �rst term, which varies as 1=R, is the radiation term which is purely transverse

to the direction R as the dyad I� R̂R̂ projects any vector perpendicular to R̂. Thus

the radiation �eld far from the source is a plane wave. The second and third terms are

also familiar induction and electrostatic terms, respectively. For an arbitrary current

distribution, the electric �eld will be

E(r) = �j!�
Z
Ge(rjr0) � J(r0)dV 0: (2:28)

Similarly for H �elds due to the magnetic currents satisfying

r�r�H� k2H = �j!�Jm; (2:29)

the dyadic Green's function of magnetic type is de�ned as the solution of

r�r�Gm � k2Gm = I�(r� r0): (2:30)

For an arbitrary magnetic current distribution the magnetic �eld will be

H(r) = �j!�
Z
Gm(rjr0) � Jm(r0)dV 0: (2:31)

Gm is obviously equal to Ge, and we denote both as G0, which is called the free-

space dyadic Green's function. In general the dyadic Green's functions of electric type

and magnetic type are di�erent from each other when the explicit boundary conditions

are included in the de�nition of Green's function. For example, in the region bounded

by a perfectly conducting wall, the boundary conditions on the surface satis�ed by

the Green's function are such that

n �Ge = 0; n�r�Gm = 0; (2:32)

19



which says that the tangential electric �eld on the electric conductor vanishes. Thus

Ge 6= Gm in general.

From Eq. (2.27), we see that the free-space dyadic Green's function has symmet-

rical properties,

G0(rjr0) =G
T
0 (r

0jr); G0(rjr0) =G0(r
0jr); (2:33)

where superscript T denotes the transpose of a dyadic. The �rst identity, often called

reciprocity relation, is satis�ed by all types of Green's function but the second one is

special to the free-space case. These are useful because we can write

G0 � J = J �G0 (2:34)

without worrying about ordering of the multiplication, i.e., G0 commutes with an

arbitrary vector.

2.4 Dyadic Green's Function and Field Equiva-

lence Principle

Consider the source in the region V1 shown in Fig. 2.1a bounded by the surface S. The

�elds of physical interest are those contained within the regions devoid of charges and

currents. Such a region is denoted as V in Fig. 2.1a bounded by S and the surface at

in�nity S1. The unit vector n is normal to S outward from the region V. Then the

electric �eld in V satis�es the source-free wave equation,

r�r�E� k2E = 0: (2:35)

We de�ne the dyadic Green's function as a solution of

r�r�G� k2G = I�(r� r0): (2:36)
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This Green's function is de�ned in the unbounded space, V +V1, and it should satisfy

the radiation condition. This is essentially the free-space dyadic Green's function

previously denoted as G0 but, since we will impose a boundary condition later, we

will leave it as G.

In order to relate the �eld in V with the surface integral over S, we use the Green's

second vector identity written as

Z
S+S1

dSn � [B� (r�A)�A�(r�B)] =
Z
V
dV [A �r� (r�B)�B �r�(r�A)]:

(2:37)

Substituting A(r0) = E(r0) and B(r0) = G(r0jr) � e, where e is an arbitrary constant

vector, we obtain

Z
S+S1

dS0n � [(G(r0jr) � e)� (r0 �E(r0))�E(r0)� (r0 �G(r0jr) � e)]

=
Z
V
dV 0[E(r0) � r0 �r0 � (G(r0jr) � e)� (G(r0jr) � e) � r0 �r0 �E(r0)]: (2.38)

Using the relation r�E = �j!�H and noting that the surface integral vanishes on

S1, we obtain

j!�
Z
S
dS 0(n �H) �G(r0jr)�

Z
S
dS0(n�E) � r0 �G(r0jr) =

(
E(r) if r 2 V
0 otherwise

;

(2:39)

where we used Eq. (2.35) and Eq. (2.36) to evaluate the volume integral. Physical

interpretation of this will be made clearer by applying the relation [21, 29]

r�G0(rjr0) =
h
r0 �G0(r

0jr)
iT

(2:40)

to see that

E(r) = �j!�
Z
S
G(rjr0) � (H� n)dS0 �r�

Z
S
G(rjr0) � (n�E)dS0

= E (due to J =H� n) +E (due to Jm = n�E) : (2.41)
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Thus we have proved Love's �eld equivalence principle. A corresponding expression

for the magnetic �eld may be obtained by substituting A(r0) = H(r0) and B(r0) =

G(r0jr) � e into Eq. (2.37) and the result is

� j!�
Z
S
dS0(n�E) �G(r0jr)�

Z
S
dS0(n �H) �r0�G(r0jr) =

(
H(r) if r 2 V
0 otherwise

(2:42)

which is equivalent to replacing E! H, H! �E, and �! � in Eq. (2.39).

If the surface S is a perfectly conducting wall, it will be convenient to distin-

guish electric and magnetic Green's functions Ge and Gm which satisfy the boundary

conditions

n �Ge = 0; n�r�Gm = 0: (2:43)

The expression for the electric �eld can be obtained by replacing G with Ge in

Eq. (2.39), then the �rst integral vanishes because of the boundary condition. Simi-

larly the magnetic �eld can be obtained by replacing G with Gm in Eq. (2.42), then

the second integral vanishes. The resulting expressions are

E(r) = �
Z
S
dS0(n �E) � r0 �Ge(r

0jr); (2.44)

H(r) = �j!�
Z
S
dS0(n �E) �Gm(r

0jr): (2.45)

Using the symmetrical relations Eq. (2.50) and Eq. (2.53) below, we rewrite the above

equations as

E(r) = �r�
Z
S
dS0Gm(rjr0) � (n�E); (2.46)

H(r) = �j!�
Z
S
dS0Gm(rjr0) � (n �E); (2.47)

which clearly show that the �elds are due to the magnetic surface current. We have

derived a mathematical expression of the Schelkuno�'s �eld equivalence principle
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shown in Fig. 2.2a. The other one corresponding to Fig. 2.2b will also be veri�ed by

interchanging the roles of Ge and Gm.

Finally, we summarize the useful symmetrical relations of dyadic Green's func-

tions. The proof is given in Ref. [21, 29].

r�r�G� k2G = I�(r� r0); (2:48)

n�G1 = 0; n�r�G2 = 0; r on S; (2:49)

G(rjr0) =
h
G(r0jr)

iT
; (2:50)

r�G0(rjr0) =
h
r0 �G0(r

0jr)
iT
; (2:51)

r�G1(rjr0) =
h
r0 �G2(r

0jr)
iT
; (2:52)

r�G2(rjr0) =
h
r0 �G1(r

0jr)
iT
: (2:53)

2.5 Reaction Concept and Variational Formalism

Let Ea and Ba be the �elds in volume V bounded by a closed surface S and excited

by volume distribution of electric current Ja and magnetic current Jam. Similarly for

Eb and Hb generated by Jb and Jbm. Then, by the Lorentz reciprocity theorem, we

get

I
S
(Ea �Hb �Eb �Ha) � dS =

Z
V
(Eb � Ja �Hb � Jam �Ea � Jb +Ha � Jbm)dV: (2:54)

If the current sources are �nite and enclosed by the surface S, the left side of

Eq. (2.54) can be shown to vanish. One of the most useful forms of Lorentz reciprocity

theorem, in terms of Rumsey's notation [23], may then be expressed as

< a; b >=< b; a >; (2:55)
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where < a; b > is called by Rumsey as reaction of the �eld a onto the current source

b and is de�ned as

< a; b >=
Z
V
(Ea � Jb �Ha � Jbm)dV: (2:56)

Rumsey showed that, if the quantity of interest can be expressed as a reaction, a

variational approximation with a suitable stationary property can be easily derived.

To see that, we let the correct reaction be < ca; cb > and the trial reaction be < a; b >.

Then it is shown that if < a; b > satis�es the condition

< ca; cb >�< a; b >=< ca; b >=< a; cb >; (2:57)

< a; b > is a variational approximation to < ca; cb > which is stationary with respect

to the correct values of ca and cb. In order to prove it, following Harrington [14], we

let

a = ca + paea; b = cb + pbeb (2:58)

where p is an arbitrary parameter and e represents an error. Then < a; b > becomes

< a; b >=< ca; cb > +pa < ea; cb > +pb < ca; eb > +papb < ea; eb > : (2:59)

Using Eq. (2.57), we rewrite the above equation as

< a; b >=< ca; cb > �papb < ea; eb > : (2:60)

Since the equation satis�es

@ < a; b >

@pa
=
@ < a; b >

@pa
= 0 as pa ! 0; pb ! 0; (2:61)

we have proved the stationary property of < a; b >.

Even if Eq. (2.57) leads us to a variational formula, it does not enable us to set up

the proper functional equations to be solved when a trial �eld and associated source
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are expanded in series of functions with unknown coe�cients. For that purpose we

will use the following expression,

< ca; cb >�< a; b >=
< a; cb >< ca; b >

< a; b >
; (2:62)

which is the same as Eq. (2.57). By equating these two expressions, we are ready to

solve for unknown coe�cients, which is usually equivalent to solving linear algebraic

equations. In the �nal stage, by substituting the calculated coe�cients into Eq. (2.57),

we will have desired results which should be a good approximation to the correct

solution.

2.6 Application to Aperture Problem in an In�-

nite Screen

We consider a surface S which consists of an in�nitely thin, perfectly conducting plane

screen S2 of in�nite extent and an aperture S1 (or Sa), which is shown in Fig. 2.3.

If we denote the �elds as E0(r), H0(r) in the absence of an aperture, we may write

the �elds in each half-space as

E(r) = E0(r) +E1(r); H(r) = H0(r) +H1(r); z � 0
E(r) = E2(r); H(r) = H2(r); z � 0

(2:63)

where the subscripts 1 and 2 indicate the region z � 0 and z � 0, respectively, and

the �elds are subject to the boundary condition

ez �E = 0; ez �H = 0; r on S2: (2:64)

E0 and H0 can be decomposed as

E0 = Einc +Eref ; H0 = Hinc +Href ; (2:65)
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E(inc), H(inc)

S1

S2

y

x

z

Figure 2.3: Di�racting aperture in a plane screen.

where the superscripts inc and ref indicate the incident and re
ected waves from the

plane conducting screen which is not perforated. The boundary conditions on the

surface S are

Einc
z = Eref

z ; H inc
t = Href

t ; r on S; (2:66)

where the subscripts z and t denote the z-component (normal component) and the

tangential component of �elds, respectively.

The boundary conditions in the apertures can be expressed by the continuity of

�elds in the aperture as

E1t = E2t; H2t �H1t = H0t; r in Sa; (2:67)

H1z = H2z; E2z � E1z = E0z; r in Sa; (2:68)

which are satis�ed if

H2t = �H1t =
1

2
H0t = H inc

t ; r in Sa; (2:69)
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E2z = �E1z =
1

2
E0z = Einc

z ; r in Sa: (2:70)

Using Eq. (2.46) and Eq. (2.47), we express the �elds in each half-space separated

by the screen in the integral form as

E(r) = r� RSaG+
m(rjr0) � (ez �E)dS0

H(r) = j!�
R
Sa
G

+
m(rjr0) � (ez �E)dS0

)
z � 0; (2.71)

E(r) = Einc +Eref �r� RSaG�
m(rjr0) � (ez �E)dS0

H(r) = Hinc +Href � j!�
R
Sa G

�
m(rjr0) � (ez �E)dS0

)
z � 0; (2.72)

where the superscripts + and � denote the region z � 0 and z � 0, respectively.

Care must be taken with the sign of unit vector n. Following our convention that

the direction of n is outwardly normal from the region where the �elds are to be

calculated, n = �ez for the region z � 0 and n = ez for the region z � 0.

The dyadic Green's function for the half-space can be readily constructed using

the image principle and is shown to be [21, 29]

G
+
e;m(rjr0) = G0(rjr0)�G0 (rjr0 � 2ezez � r0) � (I� 2ezez); z; z0 � 0; (2:73)

where the upper and lower signs are employed for G
+
e and G

+
m, respectively, and

G
�
(rjr0) = G

+
(r� 2ezez � r; r0 � 2ezez � r0) ; z; z0 � 0: (2:74)

If Eq. (2.73) is multiplied from the right by the vector ez � E(r0) and the result

evaluated at z0 = 0, it can be seen that

G
+
m(rjr0) � [ez �E(r0)] = 2G0(rjr0) � [ez �E(r0)] : (2:75)

Thus, Eqs. (2.71) and (2.72) are rewritten in the form

E(r) = r� RSa G0(rjr0) � (2ez �E)dS0
H(r) = j!�

R
Sa
G0(rjr0) � (2ez �E)dS0

)
z � 0; (2.76)

E(r) = Einc +Eref �r� RSa G0(rjr0) � (2ez �E)dS0

H(r) = Hinc +Href � j!� RSa G0(rjr0) � (2ez �E)dS0

)
z � 0: (2.77)
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Screen Screen No Screen

E, H Zero Field Zero FieldE, H E, H E, H

Jm=n x E Jm=2 n x E

n z n z n z

(a) (b) (c)

Figure 2.4: (a) Original problem; (b) and (c) Equivalent problem to (a) for the region
z � 0.

The physical steps hidden in the derivation can be visualized from the �eld equiva-

lence principle shown in Figs. 2.4 and 2.5 for the regions z � 0 and z � 0, respectively.

If we know the tangential E-�elds in the aperture, we can calculate the �elds ev-

erywhere using Eqs. (2.76) and (2.77). The desired integral equation for the tangential

E-�eld in the aperture can be written by noting the boundary conditions Eqs. (2.69)

and (2.70). In the plane of the aperture, we have

ez �Einc(r) = ez � r �
R
Sa
G0(rjr0) � (2ez �E)dS0

ez �Hinc(r) = j!� ez � RSa G0(rjr0) � (2ez �E)dS0

)
r, r0 in Sa. (2:78)

In general, it is di�cult if not impossible to solve this integral equation. Fortu-

nately, most of the physically interesting quantities such as the transmission coe�cient

do not require detailed knowledge of the �eld around the obstacle. Besides, such a

quantity is expressed in an integral form which is amenable to an approximation. We

take the calculation of the transmission coe�cient through a circular aperture as an

example of using variational formalism to obtain the approximate solution.

Consider a linearly polarized plane wave normally incident on an aperture in a
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Screen Screen No Screen

E, H Zero Field Zero FieldE, H E, H E, H

Jm=n x E Jm=2 n x E

(a) (b) (c)

n, z n, z n, z

Figure 2.5: (a) Original problem; (b) and (c) Equivalent problem to (a) for the region
z � 0.

plane screen. The transmission coe�cient is de�ned as

T =
Re

R
Sa E�H� � ezdS

Re
R
Sa
Einc �Hinc� � ezdS ; (2:79)

which is the ratio of the transmitted power through an aperture to the power incident

on the aperture. Re denotes the real part of the complex quantity. Let the incident

wave be speci�ed by

Z0H
inc = ey e

�jkz ; Einc = ex e
�jkz; (2:80)

where Z0 =
q
�0=�0 is the intrinsic impedance of free space, equal to 377 
.

Since ez�H is real in the z = 0 plane, we may express the numerator of Eq. (2.79),

representing the transmitted power, as

Pt = �Re
Z
Sa
Jm �HdS = Re < c; c >; (2:81)

where Jm = n�E = E�ez is the equivalent magnetic surface current in the aperture

and < c; c > is the Rumsey's notation for the self-reaction of the correct magnetic
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current radiating in the presence of an electric conducting screen. We approximate

< c; c > by < a; a > with the constraint given by Eq. (2.57) such that

< c; c >�< a; a >=< c; a >=< a; c > : (2:82)

The meaning of < c; a > is restated as the reaction of the correct �eld H on the trial

current Jam. The constraint condition is met for our problem because n�Hc = n�Hinc

in the aperture. A variational formula for < c; c >, which is stationary with respect

to the correct magnetic current Jcm, may be written as

< c; c >� < c; a >2

< a; a >
= �

�R
Sa
Hinc � JamdS

�2
R
Sa
Ha � JamdS

; (2:83)

where we must emphasize that Ha is the �eld due to the assumed current Jam.

Thus the variational solution of the transmission coe�cient is

T =
�1
Z0A

Re

�R
Sa
Hinc � JamdS

�2
R
Sa
Ha � JamdS

; (2:84)

where Pi = Z0A represents the incident power on the aperture of area A.

As a choice of trial �elds, Meixner has shown that, at the rim of an aperture, the

tangential component of the electric �eld vanishes as R1=2 and the normal component

increases as R�1=2 where R measures the distance from the �eld point to the edge.

Bouwkamp has obtained the low-frequency exact solution for the normal incidence

on the circular hole of radius a. According to him,

e� �E(�; �) =
2a2 � �2

(a2 � �2)1=2
cos �;

e� �E(�; �) = �2(a2 � �2)1=2 sin �;

in the hole. Here the origin of the polar coordinate system is at the center of the
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circular hole. Thus we may choose the trial �eld in the aperture in the form

e� �E(�; �) =
1

(1� �2

a2
)1=2

1X
0

an(
�

a
)2n cos �; (2.85)

e� �E(�; �) = (1� �2

a2
)1=2

1X
0

bn(
�

a
)2n sin�; (2.86)

where an and bn are unknown coe�cients to be determined. Huang, Kodis, and

Levine [15] have used this trial �eld to calculate the transmission coe�cient and have

shown that the agreement between the calculation and measurement is excellent.

As an example of calculational procedure, we adopt here a simpler form of the

original trial function used by Levine and Schwinger [21]. With the incident �eld

speci�ed in Eq. (2.80), we may assume a one-component trial �eld as

n �Ea = ex

1X
1

an(1� �2

a2
)
n�1=2

= ex�(�): (2:87)

Substituting this into Eq. (2.84) and using the relation

H(r)a = �2j!�
Z
Sa
G0(rjr0) � [n�Ea(r0)] dS0; (2:88)

we obtain

T =
1

Z0A
ReI

=
1

Z0A
Re

(
R
Sa
�(�)ds)2

j!�
R
Sa

R
Sa
�(�)(Gxx +Gyy)�(�0)dSdS0

: (2.89)

If we denote

Bn =
Z
Sa

 
1� �2

a2

!n�1=2
dS =

2�a2

2n + 1
(2:90)

and

Cmn =
Z
Sa

Z
Sa

 
1� �2

a2

!m�1=2
(Gxx +Gyy)

 
1 � �02

a2

!n�1=2
dSdS0

= Cnm; (2.91)
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we may rewrite Eq. (2.89) as

(j!�)I
1X

m;n=1

amanCmn =

 1X
n=1

anBn

!2

: (2:92)

The procedure for determining unknown coe�cients an is to di�erentiate I with re-

spect to each coe�cient a� and set @I=@a� = 0. This leads to

(j!�)I
X
m

Cnmam = Bn

 X
m

amBm

!
: (2:93)

But by de�nition I =
P
n anBn, so that we have a set of linear algebraic equations

for am,
1X
m=1

Cnmam =
Bn

j!�
: (2:94)

Once am is determined, the transmission coe�cient will be obtained from

T (N) =
1

Z0A
Re

NX
n=1

I =
1

Z0A
Re

NX
n=1

anBn; (2:95)

where N denotes the order of approximation and Re denotes the real part.

As an example, we will work out the �rst-order approximation. For N = 1, a1 is

simply j!�a1 = B1=C11. Levine and Schwinger [21] have shown that the coe�cients

Cmn can be expressed as

Cmn =
�

2

�
2

ka

�2

a3�
�
m+

1

2

�
�
�
n +

1

2

�
[(m+ n� 3)Fmn(ka)� kaF 0

mn(ka)] ;

(2:96)

where a is the radius of a circular hole and the prime denotes di�erentiation with

respect to the argument. The function Fmn(�) has been considered in Ref.[19, 20]

and its explicit expression is given there for m; n = 1; 2. Then, with Eq. (2.95), T (1)

becomes

T (1) = � 8

9�
kaIm

1

F11(ka) + kaF 0
11(ka)

; (2:97)
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which is exactly the same as Eq. (7.16) in Ref. [21] except for the sign because

we have used ej!t instead of e�i!t in Ref. [21]. We also point out the di�erences

between Levine and Schwinger's work and ours in deriving Eq. (2.97). First, we used

Rumsey's reaction concept to derive the variational formula. Second, we used M.K.S.

units instead of cgs units. Because of these di�erences, the intermediate results in

deriving Eq. (2.97) look di�erent but the �nal results are of the same form.

The transmission coe�cients obtained from the various theories, which are ex-

panded in powers of ka, are:

1. Small hole approximation (due to Bethe [5])

T =
64

27�2
(ka)4: (2:98)

2. First- and second-order approximations by the variational method using Eq. (2.87)

as the trial �elds (due to Levine and Schwinger [21])

T (1) =
64

27�2
(ka)4

�
1 +

27

25
(ka)2 + 0:72955(ka)4 + � � �

�
; (2.99)

T (2) =
64

27�2
(ka)4

�
1 +

27

25
(ka)2 + 0:74155(ka)4 + � � �

�
: (2.100)

3. Zeroth-order approximation by the variational method using Eqs. (2.85) and

(2.86) as the trial �elds (due to Levine and Schwinger [21])

T (0) =
64

27�2
(ka)4

�
1 +

22

25
(ka)2 + 0:4079(ka)4 + � � �

�
: (2:101)

4. First-order approximation by the variational method using Eqs. (2.85) and

(2.86) as the trial �elds (due to Huang, Kodis, and Levine [15])

T (1) =
64

27�2
(ka)4

�
1 +

22

25
(ka)2 + 0:3968(ka)4 + � � �

�
: (2:102)
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5. Exact solution (due to Bouwkamp [3])

T =
64

27�2
(ka)4

�
1 +

22

25
(ka)2 + 0:3979(ka)4 + � � �

�
: (2:103)

(Original work of Bouwkamp is not available to us but the above result is cited

in Ref. [15, 21].)

We note that Bethe's result is accurate only at low frequencies, namely ka � 1.

The variational method using one of the simplest trial �elds shows a good agreement

with the exact result, even when such a trial �eld does not incorporate the proper

two-component tangential electric �elds in the aperture. Inclusion of two-component

e�ects raises the accuracy up to the relative order (ka)2 even in zeroth-order ap-

proximation as shown in Eq. (2.101). This demonstrates the importance of choosing

correct trial �elds.
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Chapter 3

Longitudinal Impedance of a Hole

in an In�nite Screen

3.1 Introduction

In this chapter, we evaluate the longitudinal impedance of a hole in a thin, perfectly

conducting plane screen. We have already discussed a similar problem of calculating

the transmission coe�cient in Chapter 2. Since the analytical technique presented in

Chapter 2 is general enough to deal with the calculation of a variety of interesting

quantities, it is not necessary to introduce new formalisms for our impedance calcu-

lation. After all, calculating the impedance or the transmission coe�cient deals with

the same di�raction phenomenon. Only the de�nitions which involve the integration

of �elds are di�erent.

In Section 3.2, we will estimate the impedance in the low frequency range using

Bethe's [5] small hole approximation. If we can expand in powers of frequency, the

low frequency solution will represent the �rst term in the series.

In Section 3.3, we will obtain the variational solution of impedance with di�erent

trial �elds, showing the main result of this chapter.
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Figure 3.1: In�nite 
at screen with a hole.

3.2 Low Frequency Solution

The geometry of our problem is shown in Fig. 3.1 where a charge is moving in the

z-direction with velocity close to the speed of light. The distance between the plane

screen and the beam path is b and the origin of the coordinate is at the center of the

hole with radius d. The local cylindrical coordinate system (�; �; y) is also shown.

Denoting E1, H1 as the �elds without the hole and E2, H2 as the �elds with the

hole, we can express the longitudinal coupling impedance de�ned by Eq. (1.14) as

jI0j2Z(k) =
Z
hole

(n �E2) �H�
1dS; (3:1)

where Jm = n �E2 is the magnetic current induced in the hole, which is not known

until we solve the problem. In the low frequency approximation, however, we may

use Bethe's solution for n �E as follows.

Assuming a small hole, namely kd = 2�d=�� 1, Bethe obtained the solution for
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the magnetic current in the hole [5]

n�E = � �

�
p
d2 � �2

e� �E0 + j
2kZ0

�

q
d2 � �2 H0 = Jm;E + Jm;H ; (3:2)

where E0 and H0 are the �eld evaluated at the center of the hole in the absence of

the hole, and Jm;E and Jm;H denote the magnetic current induced in the hole due to

the incident electric and magnetic �eld, respectively.

The magnetic �eld from the unit source current can be obtained using the image

principle, resulting in

Hx =
I0
2�

"
(y � b)

x2 + (y � b)2 �
(y + b)

x2 + (y + b)2

#
e�jkz;

Hz =
I0
2�

"
x

x2 + (y + b)2
� x

x2 + (y � b)2

#
e�jkz;

(3.3)

where the coordinate system in Fig. 3.1 is used. In the plane of the hole, it becomes

Hx = �I0
�

b

x2 + b2
e�jkz; Hz = 0: (3:4)

Assuming a small hole in which the �eld is uniform but the phase is varying, we may

rewrite the source �eld as

H1 = H0 � jkzH0 +O(k2); where H0 = � I0
�b
ex: (3:5)

Then, the longitudinal coupling impedance becomes

jI0j2ZH(k) =
Z
hole

Jm;H �H�
1dS = j

4Z0d
3H2

0

3
k; (3.6)

jI0j2ZE(k) =
Z
hole

Jm;E �H�
1dS = �j 2Z0d

3H2
0

3
k; (3.7)

jI0j2Z(k) = ZH(k) + ZE(k) = j
2Z0d

3H2
0

3
k; (3.8)
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which results in Z(k) = (2Z0d
3=3�2b2)k. We note that ZH(k) due to Jm;H is a factor

of two larger than Z(k), and ZE(k) due to Jm;E is the negative of Z(k). We also

observe that the current I0 does not appear in the �nal expression of impedance.

Thus we keep I0 in the expression only for bookkeeping purposes, setting I0 = 1 in

the �nal formula. By doing so, we may simplify the expression in the later sections.

Although Eq. (3.8) is valid only for low frequencies, it is quite general. If we

consider a charge traveling inside a cylindrical beam pipe of radius b with a hole of

radius d, the longitudinal coupling impedance becomes, with H0 =
I0
2�b

in Eq. (3.8),

Z(k) = j
Z0d

3

6�2b2
k (3:9)

which is exactly the same as Kurennoy's [18] and Gluckstern's results [11].

Thus, in low frequency approximation, we can easily obtain the longitudinal cou-

pling impedance once we know the source �eld which is speci�c to the geometry

surrounding a traveling charge.

3.3 Variational Solutions

In this section, we try to calculate the longitudinal coupling impedance of a hole in

an in�nite screen using a variational method. We begin by de�ning an \impedance

functional" which is stationary with respect to the unknown quantity (magnetic cur-

rent density in the hole). Such a functional may not be the same as the quantity

of interest, the longitudinal coupling impedance, but it will be shown later that the

two quantities are related. Thus, from the impedance functional, we can obtain the

expression for the longitudinal coupling impedance. Various trial �elds are used to

evaluate the impedance functional and the results are presented.
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3.3.1 Derivation of Impedance Functional

The geometry of the problem is shown in Fig. 3.1. If we denote the �elds without

the hole in the screen as E1 and H1, and the �elds with the hole in the screen as E2

and H2, E1;2 and H1;2 satisfy Maxwell's equations in the form

r�E1;2 = �j!�H1;2; r�H1;2 = j!�E1;2+ J; (3:10)

where J = ez�(y + d)�(x)e�jkz is the current density of the driving beam with unit

amplitude and k = !
p
�0�0 is the free-space wave number.

Expanding the quantity r � (E1 �H2 �E2 �H1), we get the identity

r � (E1 �H2 �E2 �H1) = J � (E2 �E1): (3:11)

Taking the integral of both sides, we have

Z
(E1 �H2 �E2 �H1) � ndS =

Z
J � (E2 �E1)dV: (3:12)

We de�ne the impedance functional Z as

Z = �
Z
J � (E2 �E1)dV: (3:13)

In the above de�nition, as we subtracted the contribution from the source �eld, the en-

tire contribution is from the scattered �eld which satis�es the homogeneous Maxwell's

equations. We note that if the electric �eld is real, the longitudinal impedance is the

complex conjugate of the impedance functional, Z(k) = Z�(k).

If the integrating surface is chosen to coincide with the plane of the screen where

E1 satis�es the boundary condition n�E1 = 0, Z reduces to

Z =
Z
H1 � (n�E2)dS; (3:14)
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which we want to evaluate. We also recall that the longitudinal impedance is

Z(k) =
Z
H�

1 � (n�E2)dS: (3:15)

For the sake of clarity, we change the notation as

E1 = Ei; H1 = Hi;
E2 = Ei +Es; H2 = Hi +Hs;

where superscript i denotes the \incident" or \source" �eld of the driving beam

without the hole, and superscript s denotes the \scattered" �eld from the hole. The

hole is acting as \scattering object" or \obstacle"; otherwise the media are empty

space surrounded or separated by the perfectly conducting material.

In the new notation, we may write Z as

Z =
Z
Hi � (n�Es)dS; (3:16)

where n�Ei = 0 in the aperture is used. With Jm = n�Es, Z becomes

Z =
Z
Hi � JmdS: (3:17)

But, by de�nition, Z = � R J�EsdS so that this satis�es Lorentz's reciprocity theorem.

Using Rumsey's notation, we may express Z in a compact form, Z = � < i; s >

which is often called the \echo" of a scattering object, an important quantity in the

development of radar technology. We can state that our impedance functional is the

mutual reaction between the source current and the magnetic current induced in the

aperture. Using known boundary conditions which the tangential magnetic �eld must

satisfy in the aperture, H i
t = �2Hs

t , we rewrite

Z = �2
Z
Hs � JmdS = 2 < c; c >; (3:18)
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where < c; c > stands for the self-reaction of the \correct" magnetic current induced

in the aperture by the source.

Now we can write the variational expression for Z as

Z = 2 < c; c >� 2
< c; a >2

< a; a >
=
�1
2

hR
Sa H

i � (n�Ea)dS
i2

R
Sa
Ha � (n�Ea)dS

: (3:19)

Using dyadic Green's function, we calculate Ha from

Ha(r) = �2j!�
Z
Sa
G0(rjr0) � [n�Ea(r0)]dS0: (3:20)

Thus, Eq. (3.19) may be rewritten as

Z =
1

4j!�

hR
Sa
Hi � (n�Ea)dS

i2
R
Sa

R
Sa
[n�Ea(r)] �G0(rjr0) � [n�Ea(r0)]dSdS0

(3:21)

which is a homogeneous equation in the sense that the result does not depend on the

amplitude of the assumed electric �eld Ea. In fact this is a general expression for

the impedance functional of an aperture in a conducting plane as long as the plane

is the symmetry plane separating two regions, namely, an in�nite plane or coupled

waveguide structure. Details of the calculation depend on the shape of the aperture

and the assumed tangential electric �eld in the aperture. In the next section, we

present a closed form solution for a hole in an in�nite screen.

3.3.2 The First Variational Solution

In the previous section, we derived the impedance functional Z which is stationary

with respect to the correct tangential electric �eld in the aperture. In order to evaluate

it, we need to assume a trial function for Ea.

We assume a one-component trial �eld based on Bethe's solution [5] as

n�E = ex

n=1X
n=1

an(1 � �2

d2
)n�

1

2 = ex�(�); (3:22)
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where we dropped the superscript a. We note that the unknown coe�cient an is

dependent on the frequency. The impedance functional is

Z =
1

4j!�

hR
Sa
H i
x(�; �)�(�)dS

i2
R
Sa

R
Sa �(�)Gxx(�; �j�0; �0)�(�0)dSdS0 : (3:23)

We transform the equation into a more symmetrical form utilizing the symmetry

of a circle. For instance, if the beam is moving in the x direction, the expression for Z
will be in the same functional form as Eq. (3.23) except that the subscript x denoting

the x component of the �eld or dyadic Green's function is replaced by z. Thus, we

have

Z =
1

2j!�

hR
Sa H

i
x(�; �)�(�)dS

i2
R
Sa

R
Sa
�(�) (Gxx +Gzz)�(�0)dSdS0

; (3:24)

which is later shown to be much simpler to evaluate.

If we de�ne

Bn =
Z
H i
x(�; �)

 
1 � �2

d2

!n� 1

2

dS (3:25)

and

Cmn =
Z Z  

1 � �2

d2

!m� 1

2

(Gxx +Gzz)

 
1 � �02

d2

!n�1=2
dSdS0 = Cnm; (3:26)

Z becomes

Z =
1

2j!�

(
P
n=1 anBn)

2P
n;m=1 amanCmn

; (3:27)

or

(2j!�)Z X
n;m=1

amanCmn =

 X
n

anBn

!2

: (3:28)

Di�erentiation with respect to a�, and utilization of the stationary property of Z,
namely @Z=@a� = 0, yield

(2j!�)
X
m

amCmn = Bn; (3:29)
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where we used the identity Z =
P
n anBn. Once the frequency-dependent coe�cient

an is determined by solving the linear algebraic equation, Eq. (3.29), the desired

impedance functional can be obtained from

Z(N) =
NX
n=1

anBn; (3:30)

where N is the order of approximation. Since the longitudinal coupling impedance is

de�ned by Z(k) =
PN
n=1 anB

�
n and Bn = B�

n, which will be shown later, the impedance

functional is the same as the longitudinal coupling impedance.

The lowest order approximation, N = 1, results in

a1 =
B1

2j!�C11
;

Z(1) = �j Z0

2k

 
B2

1

C11

!
; (3.31)

where k = !
p
�0�0 is the free-space wave number and Z0 = 377 
.

With N=2, we �nd

a1 = �j Z0

2k

"
B1C22 �B2C12

C11C22 �C2
12

#
;

a2 = �j Z0

2k

"
B2C11 �B1C12

C11C22 �C2
12

#
;

Z(2) = �j Z0

2k

"
B2

1

C11
+

(B2C11 �B1C12)
2

C11(C11C22 �C2
12)

#

= Z(1) � j
Z0

2k

(B2C11 �B1C12)2

C11(C11C22 � C2
12)
; (3.32)

which shows the successive approximation as the order of approximation is increased.

We turn our attention to �nding an explicit expression of the quantities Bn and

Cmn in order to complete the approximate calculation of the impedance. Since the

most convenient coordinate system to describe the hole in the 
at plane is the cylin-

drical coordinate system, we express the component of dyadic Green's function in
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that coordinate system and then carry out the necessary integration to obtain Bn

and Cmn.

The free-space Green's function satisfying the wave equation

(r2 + k2)G(r; r0) = ��(r� r0)

is G = e�jkR=4�R, where R = jr� r0j. Its integral representation is

G =
e�jkR

4�R

=
1

8�3

Z
dqxe

�jqx(x�x0)
Z
dqze

�jqz(z�z0)
Z
dqy

e�jqy(y�y
0)

q2x + q2z + q2y � k2
; (3.33)

where the Cartesian coordinate system is de�ned in Fig. 3.1. With the help of a

contour which will result in the outgoing wave satisfying the radiation condition at

in�nity, Eq. (3.33) becomes

G =
1

8�2

Z Z
dqxdqz

e
�j
h
qx(x�x0)+qz(z�z0)+

p
k2�q2x�q2z jy�y0 j

i
q
q2x + q2z � k2

: (3:34)

For the convergence of the above integral, we require that Im
q
k2 � q2x � q2z is negative

which also implies Im
q
q2x + q2z � k2 positive.

We are now ready to evaluate the individual component of dyadic Green's function.

Speci�cally, we will work out Gxx and Gzz .

Gzz =

 
1 +

1

k2
@2

@z2

!
G

=
1

8�2

Z Z
dqxdqz

e
�j
h
qx(x�x0)+qz(z�z0)+

p
k2�q2x�q2zjy�y0 j

i
q
q2x + q2z � k2

 
1� q2z

k2

!
: (3.35)

Introducing a set of angle variables,

q = qzez + qxex = (q cosu)ez + (q sinu)ex;
R = (z � z0)ez + (x� x0)ex = (R cos v)ez + (R sin v)ex;
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we obtain

Gzz =
1

8�2

Z 1

0

qdqp
q2 � k2

e�j
p
k2�q2jy�y0 j

Z 2�

0
e�jqR cos(v�u)du

� 1

8�2

Z 1

0

qdqp
q2 � k2

 
q2

k2

!
e�j
p
k2�q2jy�y0 j

Z 2�

0
e�jqR cos(v�u) cos2 udu:

Using an integral formula

Z �

0
e�jz cos � sin2� �d� =

�(� + 1
2)�(

1
2)

(z=2)�
J�(z); (3:36)

we �nd

Gzz =
1

4�

Z 1

0

qdqp
q2 � k2

"
J0(qR)� q2

2k2
(J0(qR)� cos 2vJ2(qR))

#
e�j
p
k2�q2jy�y0 j:

(3:37)

A similar expression for Gxx is

Gxx =
1

4�

Z 1

0

qdqp
q2 � k2

"
J0(qR)� q2

2k2
(J0(qR) + cos 2vJ2(qR))

#
e�j
p
k2�q2 jy�y0 j:

(3:38)

On the aperture plane y = y0 = 0, the desired expression for Gxx + Gzz takes a

simpler form,

Gxx +Gzz =

" 
1 +

1

k2
@2

@x2

!
+

 
1 +

1

k2
@2

@z2

!#
G

=
1

4�

Z 1

0
qdq

�
(q2 � k2)�1=2 � 1

k2
(q2 � k2)1=2

�
J0(qR): (3.39)

Using a Bessel function addition theorem,

J0(qR) = J0
�
q(�2 + �02 � 2��0 cos(� � �0))1=2

�

=
1X
0

(2� �0n)Jn(q�)Jn(q�
0) cos n(� � �0);
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where �0n = 1 if n = 0 and �0n = 0 if n 6= 0, we further transform Gxx +Gzz as

Gxx +Gzz =
1

4�

1X
0

(2 � �0n) cos n(� � �0)

Z 1

0
qdq

�
(q2 � k2)�1=2 � 1

k2
(q2 � k2)1=2

�
Jn(q�)Jn(q�

0):

Substituting the above expression into Eq. (3.26), we have

Cmn = �
Z 1

0

�
(q2 � k2)�1=2 � 1

k2
(q2 � k2)1=2

�

�
Z d

0
�

 
1 � �2

d2

!m� 1

2

J0(q�)d�
Z d

0
�0
 
1 � �02

d2

!n� 1

2

J0(q�
0)d�0 (3.40)

which is to be evaluated.

With the change of variable � = d sin', the �rst integral in Eq. (3.40) becomes

Z d

0
�

 
1� �2

d2

!m� 1

2

J0(q�)d� = d2
Z �

2

0
J0(qd sin') sin' cos

2m 'd'

= d2
2m�

1

2�(m+ 1
2
)

(qd)m+ 1

2

Jm+ 1

2

(qd); (3.41)

where, in deriving the �nal result, we used Sonine's �rst �nite integral formula1,

Z �
2

0
J�(z sin �) sin

�+1 � cos2�+1 �d� =
2��(� + 1)

z�+1
J�+�+1(z) (3:42)

which is valid when both Re(�) and Re(�) exceed -1.

Substituting the above intermediate result into Eq. (3.40) and introducing a new

variable v = q=k, we rewrite Cmn as

Cmn =
�

2

�
2

kd

�m+n

d3�
�
m+

1

2

�
�
�
n+

1

2

�
(3.43)Z 1

0

h
(v2 � 1)�1=2 � (v2 � 1)1=2

i
v�(m+n)Jm+ 1

2

(kdv)Jn+ 1

2

(kdv)dv:

1See reference [30], p. 373.
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If we de�ne Fmn(�) as

Fmn(�) =
Z 1

0
(v2 � 1)1=2v�(m+n)Jm+ 1

2

(�v)Jn+ 1

2

(�v)dv; (3:44)

it can be shown that

Cmn =
�

2

�
2

kd

�m+n

d3�
�
m+

1

2

�
�
�
n+

1

2

�
[(m+ n � 3)Fmn(kd)� kdF 0

mn(kd)] ;

(3:45)

where the prime stands for di�erentiation with respect to the argument. With the

substitution of the above into Eq. (3.31), we obtain

Z(1) = j
Z0

�2d2
(kd)

B2
1

F11(kd) + kdF 0
11(kd)

: (3:46)

In order to evaluate the function Fmn(�), we divide the integration range into two

parts,

Fmn(�) = Rmn(�) + jImn(�); (3:47)

where

Imn(�) =
Z 1

0
(1 � v2)1=2v�(m+n)Jm+ 1

2

(�v)Jn+ 1

2

(�v)dv;

Rmn(�) =
Z 1

1
(v2 � 1)1=2v�(m+n)Jm+ 1

2

(�v)Jn+ 1

2

(�v)dv: (3.48)

For the �rst few values of m and n, Levine and Schwinger [19] found

I11(�) =
�

2�
� 1

4��
+

1

8�2
S0(2�) � 1

16�3

Z 2�

0
S0(t)dt� 1

4�

Z 2�

0

S1(t)

t
dt;

R11(�) =
1

4�

�
1 +

1

4�2

�Z 2�

0
J0(t)dt� 1

8�2
J0(2�) � 1

4�
J1(2�); (3.49)

where S0, S1 and J0, J1 denote the zeroth- and �rst-order Struve and Bessel func-

tions, respectively. The similarity between the two functions may be illustrated by
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comparing the integral representation of the two functions,

S�(z) =
2(z=2)�

�(� + 1
2
)�(1

2
)

Z 1

0
(1� t2)��

1

2 sin ztdt;

J�(z) =
2(z=2)�

�(� + 1
2
)�(1

2
)

Z 1

0
(1� t2)��

1

2 cos ztdt:

We now need to calculate Bn in order to obtain the complete expression for the

impedance. In the plane of the hole, y=0, the source �elds become

Hx = �I0
�

b

x2 + b2
e�jkz; Hz = 0: (3:50)

Thus,

Bn =
Z
Hi � (E� n)dS;

= � b
�

Z
Sa

 
1� �2

d2

!n� 1

2 e�jkz

x2 + b2
dS: (3.51)

Assuming that the source current is far from the hole, i.e., x=b << 1, and assuming

that the �eld is static, Bn becomes

Bn =
2�d2

(2n+ 1)
H0 = � 2d2

(2n + 1)b
:

In fact this is the approximation on which Bethe's small hole theory is based. Later,

we will factor this quantity out of a whole expression leaving the e�ect of �nite size

of the hole and the e�ect of phase variation along the hole in the compact form. We

will call this a form factor.

For general cases, introducing the change of the variables z = � cos � and x =

� sin � and denoting w = �=b, we �nd from Eq. (3.51)

Bn = 2H0

Z d

0

 
1� �2

d2

!n� 1

2

�d�
Z �

0

e�jkbw cos �

w2 sin2 � + 1
d�: (3:52)
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We integrate the second term to obtain

Z �

0

e�jkbw cos �

w2 sin2 � + 1
d� =

1X
m=0

(�1)mw2m
Z �

0
e�jkbw cos � sin2m �d�

=
1X
m=0

(�1)m 2m�m

b2mkm
�
�
m+

1

2

�
�
�
1

2

�
Jm(k�):

Substituting the above into Eq. (3.52) and using

Z d

0

 
1 � �2

d2

!n� 1

2

�m+1Jm(k�)d� = dm+2
Z �

2

0
Jm(kd sin �) cos

2n � sinm+1 �d�

= dm+2 2
n� 1

2�(n + 1
2)

(kd)n+
1

2

Jm+n+ 1

2

(kd);

we may rewrite Bn as

Bn =
2�d2

2n + 1
H0 FFn(

d

b
; kd); (3.53)

FFn(
d

b
; kd) =

r
�

2
(2n + 1)!! � (3.54)2

4Jn+ 1

2

(kd)

(kd)n+
1

2

+
1X
1

(�1)m(2m� 1)!!

 
d

b

!2m Jm+n+ 1

2

(kd)

(kd)m+n+ 1

2

3
5 ;

where FFn(
d
b
; kd) denotes \form factor" mentioned before. We can verify that

FFn(
d

b
; kd) ' 1 as kd! 0 and

d

b
! 0;

FFn(
d

b
; ka) ' (kd)�n�1 as kd!1 and

d

b
< 1:

The series in the form factor is uniformly convergent in the whole range of kd if

d=b < 1. The fast convergence of series can be seen in Fig. 3.2 which shows that even

the �rst term alone is a very good approximation. The �rst term contribution arises

from the phase variation along the hole with the source current being far from the

hole. The amplitude of the source �eld is constant in the hole and is equal to the
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value at the center of the hole. We may approximate the form factor as

FFn(kd) '
r
�

2
(2n+ 1)!!

Jn+ 1

2

(kd)

(kd)n+
1

2

: (3:55)

We now express Z(1) in a form which is convenient for numerical evaluation,

Z(1) = j
4Z0d

2H2
0

9
(kd)

FF 2
1

F11(kd) + kdF 0
11(kd)

: (3:56)

Numerical values of Z(1) can be obtained by substituting Eqs. (3.49) and (3.53) into

Eq. (3.56). Since all the functions used in the expression are tabulated in standard

reference materials, it is easy to do; the result is shown in Fig. 3.3.

From the �gure, we observe that the resonance frequency kr occurs at kd = 1:6

where Im Z(k) is equal to zero by de�nition. Since all the electromagnetic power

is dissipated at the resonance, Re Z(k) must have a maximum value there. But the

�gure shows that the maximum of Re Z(k) occurs at kd = 1:3 which contradicts

physical argument. Such an unphysical phenomenon may be corrected if we include

the tangential �eld due to the incident electric �eld in Bethe's solution in our trial

�elds.

In order to investigate the impedance in the low frequency range, we use the

expansions [19]

I11(�) =
2�3

27�
� 4�5

675�
+

16�7

55125�
� � � �;

R11(�) =
1

3
� �2

15
+

�4

140
� � � � :

We may write the impedance functional in a form appropriate to small values of kd:

ReZ(1) =
32Z0d

2H2
0

27�
(kd)4

�
1 +

22

25
(kd)2 � � � �

�
; (3.57)

ImZ(1) =
4Z0d

2H2
0

3
(kd)

�
1 +

2

5
(kd)2 � � � �

�
: (3.58)
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If we compare these with the low frequency result, namelyZ(k) = j(2Z0d
3H2

0=3) k,

we �nd that the result from the variational method is a factor of two larger than the

low frequency result. This may be explained again by the fact that we excluded the

tangential �eld in the hole due to the electric �eld in our trial �elds.

Since the impedance shown in Fig. 3.3 is similar to the impedance of a parallel

RLC-resonator circuit, it would be useful if we described our impedance functional in

terms of circuit parameters. The impedance of a broadband RLC-resonator circuit is

Zbb(!) =
R

1 + jQ
�
!
!r
� !r

!

� ; (3:59)

where Q is the quality factor and !r is the resonant frequency. In the limit of low

frequency,

Zbb(!) ' jR(!=!r)=Q: (3:60)

The quality factor Q is de�ned by

Q =
!r
24! ; (3:61)

where jZbb(!)j at the frequency ! = !r +4! is 0:707 of its maximum value.

From the above de�nition, we �nd that

!r �= 1:6c

d
; Q �= 1:8; R �= 3:84Z0d

2H2
0 : (3:62)

The second-order variational solution of impedance Z(2) can be written as

Z(2) = j
4Z0d

2H2
0

9
(kd)

(F22 � kdF 0
22)FF

2
1 � k2d2

25 [(F11 + kdF 0
11)FF

2
2 � 10F 0

12FF1FF2]

(F11 + kdF 0
11)(F22 � kdF 0

22) + (kdF 0
12)

2
: (3.63)

Numerical values of Z(2) are shown in Fig. 3.4. The same comments as in Fig. 3.3

apply here also.
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In conclusion, we have derived the formula for the coupling impedance of a hole

in an in�nite screen based on a variational method. Our results show that the hole is

acting like a broadband resonator circuit and our formulas are suitable for determining

the circuit parameters which are of practical use. However, in using one type of

trial �eld, it is shown that the resulting impedance exhibits unphysical behavior.

Such a de�ciency of the method is not removed by simply going to the higher order

approximation. We therefore believe that, in order to obtain physically consistent

results, we should include another type of trial �eld, namely the �eld inside the hole

due to the electric �eld which appeared in Bethe's low frequency solution. This is

carried out in the next section.
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One Term Approximation

Converged Solution

Two Term
Approximation

d/b=1.0

kd

One Term Approximation

Converged Solution

Two Term
Approximation

d/b=0.5

kd

One Term Approximation

Converged Solution

Two Term
Approximation

kd

d/b=0.1

Figure 3.2: Form factor as functions of kd.
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Figure 3.3: Impedance Functional Z(1)(kd) for various d=b values.
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Figure 3.4: Impedance Functional Z(2)(kd) for various d=b values.
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3.3.3 The Second Variational Solution

In order to eliminate the unphysical behavior of the longitudinal coupling impedance

found in the previous section, we include the tangential �eld in the hole due to the

incident electric �eld in our variational calculation. An appropriate two-component

trial �eld in the hole based on Bethe's solution is taken to be

n�E = a1
q
1� (�=d)2 ex + b1

(�=d)q
1 � (�=d)2

e�: (3:64)

Since the impedance functional Z(k) is

Z(k) = 1

4j!�

hR
Sa
Hi � (n�E)dS

i2
R
Sa

R
Sa
[n�E(r)] �G0(rjr0) � [n�E(r0)]dSdS0

; (3:65)

we may write the numerator as

�
a1B

a
1 + b1B

b
1

�2
; (3:66)

and the denominator as

4j!�
h
a21C

aa
11 + a1b1C

ab
11 + b21C

bb
11

i
; (3:67)

where

Ba
1 =

Z
Sa
H i
x(�; �)

q
1 � (�=d)2dS;

Bb
1 =

Z
Sa
H i
x(�; �)

(�=d)q
1 � (�=d)2

dS;

Caa
11 =

Z d

0

q
1� (�=d)2�d�

Z d

0

q
1 � (�0=d)2�0d�0

Z 2�

0
d�
Z 2�

0
d�0

[sin � sin �0G��0 + sin � cos �0G��0 + cos � sin �0G��0 + cos � cos �0G��0 ] ;
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Cab
11 =

Z d

0

q
1� (�=d)2�d�

Z d

0

(�0=d)q
1 � (�0=d)2

�0d�0

Z 2�

0
d�
Z 2�

0
d�0 [sin �G��0 + cos �G��0 ]

+
Z d

0

q
1� (�0=d)2�0d�0

Z d

0

(�=d)q
1 � (�=d)2

�d�

Z 2�

0
d�
Z 2�

0
d�0 [sin �0G��0 + cos �0G��0 ] ;

Cbb
11 =

Z d

0

(�=d)q
1� (�=d)2

�d�
Z d

0

(�0=d)q
1 � (�0=d)2

�0d�0
Z 2�

0
d�
Z 2�

0
d�0G��0 :

The components of dyadic Green's function in the cylindrical coordinate system

are de�ned by

G��0 =

 
cos(� � �0)� 1

k2
@2

@�@�0

!
G;

G��0 =

 
sin(� � �0)� 1

k2�0
@2

@�@�0

!
G;

G��0 =

 
� sin(� � �0)� 1

k2�

@2

@�@�0

!
G;

G��0 =

 
cos(� � �0)� 1

k2��0
@2

@�@�0

!
G;

where G is the free-space scalar Green's function which can be expressed as

G =
e�jkR

4�R
=

1

4�

Z 1

0

qdqp
q2 � k2

J0(qR)

=
1

4�

1X
0

(2� �0n) cosn(� � �0)
Z 1

0

qdqp
q2 � k2

Jn(q�)Jn(q�
0):
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The impedance functional, in terms of these coe�cients, may be written as

Z(k) =
�
a1B

a
1 + b1B

b
1

�2
4j!�

h
a21C

aa
11 + a1b1Cab

11 + b21C
bb
11

i ; (3:68)

or

4j!�
h
a21C

aa
11 + a1b1C

ab
11 + b21C

bb
11

i
Z(k) =

�
a1B

a
1 + b1B

b
1

�2
: (3:69)

A stationary property of Z, i.e., @Z=@a1 = 0, yields

2a1C
aa
11 + b1C

ab
11 = �j

Z0

2k
Ba

1 ; (3:70)

and, similarly from @Z=@b1 = 0, we have

a1C
ab
11 + 2b1C

bb
11 = �j

Z0

2k
Bb

1: (3:71)

Solving two linear algebraic equations, we obtain

a1 = j
Z0

2k

Cab
11B

b
1 � 2Cbb

11B
a
1

4Caa
11C

bb
11 �

�
Cab
11

�2 ; (3.72)

b1 = j
Z0

2k

Cab
11B

a
1 � 2Caa

11B
b
1

4Caa
11C

bb
11 �

�
Cab
11

�2 : (3.73)

Once the unknown coe�cients a1(k) and b1(k) are determined, the impedance

functional can be calculated from the de�nition

Z(k) = a1B
a
1 + b1B

b
1: (3:74)

We can also calculate the longitudinal coupling impedance which may be written as

Z(k) = a1B
a�
1 + b1B

b�
1 : (3:75)
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We �rst evaluate Cbb
11. The corresponding integral in angle variables becomes

Z 2�

0

Z 2�

0
d�d�0G��0 =

1

4�
[
Z 2�

0

Z 2�

0
d�d�0 cos(� � �)

1X
0

(2� �0n) cosn(� � �0)

�
Z 2�

0

Z 2�

0
d�d�0

1

k2��0
@2

@�@�0

1X
0

(2� �0n) cos n(� � �0)]

Z 1

0

qdqp
q2 � k2

J1(q�)J1(q�
0):

From the orthogonal property of trigonometric functions, we get

Z 2�

0

Z 2�

0
d�d�0G��0 = �

Z 1

0

qdqp
q2 � k2

J1(q�)J1(q�
0): (3:76)

If we de�ne

Ib1 =
Z d

0

(�=d)q
1� (�=d)2

J1(q�)�d�; (3:77)

we have

Cbb
11 = �

Z 1

0

qdqp
q2 � k2 I

b
1I

b
1: (3:78)

A similar procedure yields

Cab
11 = 0; (3.79)

Caa
11 =

�

2

Z 1

0

qdqp
q2 � k2

"
Ia0I

a
0 + Ia2 I

a
2 �

q2

k2
Ia0 I

a
0

#
; (3.80)

where Ia0 and Ia2 are de�ned by

Ia0 =
Z d

0

s
1 �

�
�

d

�2

J0(q�)�d�; (3.81)

Ia2 =
Z d

0

s
1 �

�
�

d

�2

J2(q�)�d�: (3.82)

Since Cab
11 = 0, the unknown coe�cients a1 and b1 are simpli�ed to

a1 = �j Z0

4k

Ba
1

Caa
11

; b1 = �j Z0

4k

Bb
1

Cbb
11

: (3:83)
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We further note that

4j!�a21C
aa
11 = 4j!�

Z
Sa

Z
Sa

�
a1
q
1 � (�=d)2

�
Gxx(�; �j�0; �0)

�
a1
q
1 � (�0=d)2

�
dSdS 0

(3:84)

which indicates that

Caa
11 = C11=2; (3:85)

where C11 is de�ned in Eq. (3.26), Section 3.3.2. We also note that Ba
1 is equal to B1

de�ned in Eq. (3.25), Section 3.3.2. Thus, we only need to evaluate Cbb
11 and B

b
1.

Before we carry out the necessary integrals for Cbb
11, we note that if we de�ne

ZH(k) = a1B
a�
1 = �j Z0

4k

jBa
1 j2

Caa
11

= �j Z0

2k

jB1j2
C11

; (3.86)

ZE(k) = b1B
b�
1 = �j Z0

4k

jBb
1j2

Cbb
11

; (3.87)

Z(k) can be written as

Z(k) = ZE(k) + ZH(k); (3:88)

where ZH(k) is already calculated in Section 3.3.2. From this, we �nd that the

tangential �elds in the hole due to electric �eld and magnetic �eld contribute to the

impedance separately.

In order to show the order of approximation, we adopt the following notation

Z(N+M) = Z
(N)
E + Z

(M)
H ; (3:89)

where M or N denotes the order of approximation or the number of terms used for

the trial �eld, and Z(N)
H = Z(N) is calculated in Section 3.3.2.

Using Sonine's �rst �nite integral formula, we evaluate Ib1 as follows,

Ib1 =
Z d

0

(�=d)q
1 � (�2=d2)

J1(q�)�d�
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= d2
Z �=2

0
J1(qd sin �) sin

2 �d�

= d2
r
�

2

J3=2(qd)

(qd)1=2
:

Substituting the above into Eq. (3.78), we obtain

Cbb
11 =

�2d3

2

Z 1

0

J2
3=2(qd)p
q2 � k2

dq: (3:90)

Introducing a new variable � = kd, we separate the above into two parts, that is,

Cbb
11 =

�2d3

2
I =

�2d3

2
(I1 � I2); (3:91)

where

I1 =
Z 1

0

J3=2(q)J1=2(q)

q
p
q2 � �2

dq; I2 =
Z 1

0

J3=2(q)J�1=2(q)p
q2 � �2

dq: (3:92)

From the product representation of the Bessel function

J�(z)J�(z) =
2

�

Z �=2

0
J�+�(2z cos �) cos(� � �)�d�; Re(�+ �) > �1; (3:93)

we �nd

I1 =
2

�

Z �=2

0
cos �d�

Z 1

0

J2(2q cos �)

q
p
q2 � �2

dq; (3.94)

I2 =
2

�

Z �=2

0
cos 2�d�

Z 1

0

J1(2q cos �)p
q2 � �2

dq: (3.95)

We �rst consider the real part of I1.

Re I1 =
2

�

Z �=2

0
cos �d�

Z 1

�

J2(2q cos �)

q
p
q2 � �2

dq;

=
2

�

Z �=2

0
cos �d�

r
�

2

J3=2(2� cos �)

(2 cos �)1=2�3=2
;

where we used the integral formula2

Z 1

x

J�(ax)

x��1
�
x2 � z2

��
dx =

2��(� + 1)

a�+1z����1
J����1(az);

a � 0; Re
�
�

2
� 1

4

�
> Re� > �1: (3.96)

2See reference [30], p. 417.
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When � is half of an odd integer, the function J�(z) has a �nite representation in

terms of algebraic and trigonometric functions of z, i.e.,

J3=2(z) =

s
2

�z

�
sin z

z
� cos z

�
: (3:97)

Then

Re I1 =
1

��2

Z �=2

0
d�

"
sin(2� cos �)

2� cos �
� cos(2� cos �)

#
: (3:98)

If we de�ne

F1(�) =
Z �=2

0

sin(2� cos �)

2 cos �
d�; (3:99)

we �nd

Re I1 =
1

��2

"
F1(�)

�
� �

2
J0(2�)

#
: (3:100)

Since

F 0
1(�) =

Z �=2

0
cos(2� cos �)d� =

�

2
J0(2�); (3:101)

it follows that

F1(�) =
Z �

0
F 0
1(t)dt =

�

2

Z �

0
J0(2t)dt =

�

4

Z 2�

0
J0(t)dt: (3:102)

Thus we �nally obtain the �nite representation of Re I1 as

Re I1 =
1

4�2

�
1

�

Z 2�

0
J0(t)dt� 2J0(2�)

�
: (3:103)

We now consider the imaginary part of I1.

Im I1 = � 2

�

Z �=2

0
cos �d�

Z �

0

J2(2q cos �)

q
p
�2 � q2

dq

= � 2

�

Z �=2

0
cos �d�

Z �

0

J2(2� cos � sin�)

� sin�
d�

= � 2

�

Z �=2

0
cos �d�

r
�

2

S3=2(2� cos �)

(2 cos �)1=2�3=2
;
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where we used the general Sonine's �rst �nite integral formula3

Z �=2

0
J�(z sin �) sin

1�� �d� =
r
�

2z
S�� 1

2

(z): (3:104)

S�(z) is Struve's function which has a �nite representation if � is half of an odd

integer, i.e.,

S3=2(z) =

r
z

2�

�
1 +

2

z2
� 2

z
sin z � 2 cos z

z2

�
: (3:105)

With the substitution of a �nite representation of Struve's functions, we obtain

Im I1 = � 1

��2

Z �=2

0
d�

"
� cos � � sin(2� cos �) +

1� cos(2� cos �)

2� cos �

#
;

= � 1

��2

"
�� �

2
S0(2�) +

F2(�)

�

#
;

where we used

Z �=2

0
sin(z cos �) sin2� �d� =

p
��(� + 1

2)

2( z
2
)�

S�(z); (3:106)

and F2(�) is de�ned as

F2(�) =
Z �=2

0

1� cos(2� cos �)

2 cos �
d�: (3:107)

It is evident that F2(0) = 0 and that

F 0
2(�) =

Z �=2

0
sin(2� cos �)d� =

�

2
S0(2�): (3:108)

From these it follows that

F2(�) =
Z �

0
F 0
2(t)dt =

�

2

Z �

0
S0(2t)dt =

�

4

Z 2�

0
S0(t)dt: (3:109)

Accordingly

Im I1 = � 1

4�2

�
4

�
� � 2S0(2�) +

1

�

Z 2�

0
S0(t)dt

�
: (3:110)

3See reference [30], p. 374.
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Following the similar procedure, we obtain a �nite representation of I2 as

Re I2 =
1

2�

�
2J1(2�) �

Z 2�

0
J0(t)dt

�
; (3.111)

Im I2 = � 1

2�

�
2S1(2�) �

Z 2�

0
S0(t)dt

�
: (3.112)

(3.113)

Since I = I1 � I2, we �nd that

Re I = +
�

1

4�3
+

1

2�

�Z 2�

0
J0(t)dt� J0(2�)

2�2
� J1(�)

�
; (3.114)

Im I = �
�

1

4�3
+

1

2�

�Z 2�

0
S0(t)dt+

S0(2�)

2�2
+
S1(�)

�
� 1

��
: (3.115)

Substituting these equations into Eq. (3.91), we obtain the expression for Cbb
11. For

the small values of �, we may obtain a series expansion which can be written as

I(�) =
1

3

 
1 +

�2

5
� 9�4

140
+ � � �

!
� j

4�3

27�

 
1� 4�2

25
+ � � �

!
: (3:116)

We now need to calculate Bb
1 to complete the expression for the impedance. As-

suming Hi = H0e
�jkz ex where H0 is the �eld at the hole center, we obtain

Bb
1 = H0

Z d

0
�d�

Z 2�

0
d�

(�=d)q
1� (�=d)2

cos � e�jk� cos �

= �j2�H0

Z d

0

(�=d)q
1� (�=d)2

J1(k�)�d�

= �j2�d2H0

r
�

2

J3=2(kd)

(kd)1=2
:

With the substitution of Cbb
11 and B

b
1 into the expression for Z

(1)
E , Eq. (3.87), we

�nd

Z
(1)
E = �j Z0�H

2
0

k2
J2
3=2(kd)

I(kd)
: (3:117)
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It may be interesting to compare Z
(1)
E (k) and Z

(1)
H expanded in powers of kd. We

�nd that

Z
(1)
H =

32Z0d
2H2

0

27�
(kd)4

�
1 +

22

25
(kd)2 � � � �

�
+ j

4Z0d
2H2

0

3
(kd)

�
1 +

2

5
(kd)2 � � � �

�
;

Z
(1)
E =

8Z0d
2H2

0

27�
(kd)4

�
1� 19

25
(kd)2 + � � �

�
� j

2Z0d
2H2

0

3
(kd)

�
1 � 2

5
(kd)2 + � � �

�
:

In the low frequency range, it is found

Z(2) = Z
(1)
H + Z

(1)
E ' j

2Z0d
3H2

0

3
k; (3:118)

which is the same as the low frequency result found in Section 3.2.

Numerical results of Z(1)
H and Z(1)

E are presented in Fig. 3.5. There we �nd that

the impedance of magnetic type, ZH , is mainly inductive (Im Z > 0), and the electric

type exhibits capacitive behavior (Im Z < 0).

Combining the two e�ects, we have numerical results of Z(2)(k) which are shown

in Fig. 3.6. We note that the resonant frequency is located at kd = 1:35. We also

�nd that, at the resonant frequency, the imaginary part of the impedance is zero and

the real part has its maximumwhich is consistent with physical argument. With this

new result, we revise the circuit parameters, Eq. (3.62), found in Section 3.3.2 to the

new one

!r �= 1:35c

d
; Q �= 1:8; R �= 1:62Z0d

2H2
0 : (3:119)

When we use the trial �eld which consists of the three terms

n �E = a1

 
1 � �2

d2

!1=2

ex + a2

 
1 � �2

d2

!3=2

ex + b1
(�=d)q

1 � (�=d)2
e�; (3:120)

we have

Z(3) = Z
(2)
H + Z

(1)
E : (3:121)
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Its numerical values are shown in Fig. 3.7.

In conclusion, we have shown that, with the inclusion of the tangential �eld due to

the incident electric �eld in the trial �elds, the result is consistent with the physical

argument.
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Figure 3.5: Longitudinal coupling impedance, Z(1)
H (kd) and Z(1)

E (kd), for d=b = 0:5.
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Figure 3.6: Longitudinal coupling impedance Z(2)(kd) for various d=b values.
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Figure 3.7: Longitudinal coupling impedance Z(3)(kd) for various d=b values.
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Chapter 4

Longitudinal Impedance of a Hole

in the Accelerator Beam Pipe

4.1 Introduction

In this chapter, we evaluate the longitudinal coupling impedance of an aperture in

the accelerator beam pipe. Although the beam pipe can have an arbitrary cross-

section, we assume a beam pipe with a rectangular cross-section which is a good

approximation to the elliptical shape used in most of the electron accelerators and

storage rings.

Since the aperture connects two regions, inside and outside of the beam pipe, we

need to know the outside geometry to complete the speci�cation of the problem. In

a real accelerator, the region outside the beam pipe coupled by an aperture is com-

pletely arbitrary; it can be a closed vacuum vessel, waveguide structure, transmission

line, or even a liner structure. Hence, in order to understand the fundamental charac-

teristics of an aperture coupling, we choose the simplest geometry which has as many

symmetries as possible.

These considerations result in the geometry of two equally shaped rectangular
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Figure 4.1: Rectangular wave guide coupled by a hole as a model to the accelerator
beam pipe with a hole.

waveguides coupled by a hole which is located in the center of the common wall.

Such a geometry is shown in Fig. 4.1.

In Section 4.2, we will estimate the impedance in the low frequency range using

Bethe's small hole theory.

In Section 4.3, we will obtain the variational solutions of impedance using di�er-

ent trial �elds and the results will be compared in Section 4.4 with the numerical

calculation from the general wake potential program MAFIA-T3.

4.2 Low Frequency Solution

If the radius of a hole is much smaller than the wavelength, and the plane of the

hole is the symmetry plane, we can use Bethe's result for the �eld inside hole (see
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Eq. (3.2)) which may be written as

n�E = � �

�
p
d2 � �2

e� �E0 + j
2kz0
�

q
d2 � �2 H0; (4:1)

where d is the radius of the hole shown in Fig. 4.1, k = !
p
�0�0 is the free-space wave

number, and Z0 = 377 
 is the characteristic impedance of free space.

Since we have already obtained a general expression for the impedance in the low

frequency range as

Z(k) = j
2Z0d

3H2
0

3
k; (4:2)

we only need to know the source �eld, H0, at the hole center.

The electrostatic potential of line charge of density � located at x = x1; y = y1

satis�es the Poisson equation

@2�

@x2
+
@2�

@y2
= ��

�
�(x� x1)�(y � y1); (4:3)

where �=� can be written in terms of the drive current, I0, as �=� = Z0I0.

For the rectangular waveguide with walls at x = �a; y = �b, the corresponding
Green's function satis�es

@2G

@x2
+
@2G

@y2
= ��(x� x1)�(y � y1); (4:4)

with the boundary condition G = 0 at x = �a; y = �b. Expanding Green's function
in single series, we assume

G(x; y) =
1X
1

an(y)bn(x); (4:5)

where an(y) is the amplitude function and bn(x) is the basis function which is similar

to the Fourier series expansion of an arbitrary function. In a Cartesian coordinate
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system, we may choose bn(x) as

bn(x) =
1p
a
sin

n�

2a
(x+ a) (4:6)

which vanishes at x = �a and satis�es the orthonormal conditions,

Z a

�a
bn(x)bm(x)dx = �mn: (4:7)

Substituting Eq. (4.5) into Eq. (4.4), we obtain

1X
1

"
d2an(y)

dy2
�
�
n�

2a

�2

an(y)

#
bn(x) = ��(x� x1)�(y � y1): (4:8)

Multiplying both sides of the equation and integrating, we obtain

d2am(y)

dy2
�
�
m�

2a

�2
am(y) = �bm(x1)�(y � y1): (4:9)

Solving the above equation for am(y) by the well-known procedure, we �nd the

potential function as

�(x; y) =
2I0Z0

�

1X
n=1

sin n�
2a (x+ a) sin n�

2a (x1 + a)

n sinh n�b
a(

sinh n�
2a (y + b) sinh n�

2a (b� y1) y < y1
sinh n�

2a
(b� y) sinh n�

2a
(y1 + b) y > y1:

(4.10)

We note that, if we assumed G =
P
an(x)bn(y), we would have an alternative expres-

sion with a and b, x and y, x1 and y1 interchanged in the above equation.

Using the relation Hx = �Ey=Z0, we obtain H0 at the center of the hole (x =

0; y = b; x1 = y1 = 0)

H0 = � I0
2a

X
n=odd

1

cosh n�b
2a

: (4:11)

This series converges fast. With this, we have

Z(k) = j
Z0d

3

6a2

 X
n=odd

1

cosh n�b
2a

!2

k: (4:12)
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4.3 Variational Solution

The general expression for impedance in variational method was derived in the pre-

vious chapter and was shown to be

Z(k) = �1
2

hR
Sa
Hi � (n�Ea)dS

i2
R
Sa H

a � (n�Ea)dS
; (4:13)

where Ha may be calculated as

Ha(r) = �j!�
Z
Sa
Gm(rjr0) � (n�Ea)dS0: (4:14)

The dyadic Green's functionGm is of magnetic type whose boundary condition should

satisfy n�r�Gm = 0 on the walls. The eigenfunction expansion of dyadic Green's

function for a rectangular waveguide is developed by Tai [29]. He shows that Gm can

be expanded as a double-in�nite series of harmonic functions in Cartesian coordinates

(x; y; z). Since the convergence of a series of harmonic functions is very slow and the

Cartesian coordinate system suitable for the rectangular waveguide is not convenient

in describing a hole in the wall, we use the image principle to remove the guide walls,

enabling us to use the familiar free-space dyadic Green's function.

Such a conversion of the geometry from a hole in a waveguide to in�nite image

holes embedded in free-space is shown in Fig. 4.2. In the original problem, the

center of an equivalent magnetic surface current (replacing the hole closed by the

conducting wall) is located at the origin inside the waveguide. In the converted

problem, waveguide walls are replaced by an in�nite array of image magnetic surface

currents (\image-source") located at x = �2na; n = 1; 2; 3; � � � and y = �4mb; m =

1; 2; 3; � � � in addition to the original magnetic surface current (\self-source").
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Figure 4.2: Hole in waveguide, its equivalent magnetic surface current and its images
in in�nite space.
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Since we have two contributions to Ha from the self- and image-sources, we sep-

arate Ha into two parts, namely,

Ha = Ha
self +Ha

image: (4:15)

We note that, if the contribution from images is zero, the impedance functional Z(k)
is the same as the one for a hole in an in�nite screen. The only di�erence is that the

source �eld of the driving beam must be evaluated for waveguide structure. Thus, we

calculate the contribution from the image-source and compare it with the contribution

from the self-source.

For this purpose, we use a simple trial �eld used in Section 3.3.2 which is rewritten

as

Jm = n�E = �(�) ex; �(�) =

s
1 � �2

d2
: (4:16)

If we de�ne the denominator in Eq. (4.13) as

D =
Z
Sa
(Ha

self +Ha
image) � (n�Ea)dS = Dself +Dimage; (4:17)

then

Dself = �j!�
Z
Sa

Z
Sa
�(�)(Gxx +Gzz)�(�

0)dSdS0 = �j!�C11; (4:18)

where Cmn is calculated in Eq. (3.40). For small kd, Dself has a series expansion in

the form

Im Dself =
�2d2

6Z0

�
1

�
� 3

5
� + � � �

�
; (4.19)

Re Dself = �4�d2

27Z0
�2
�
1 � 3

25
�2 + � � �

�
; (4.20)

with � = kd. In the low frequency range, the imaginary part of Dself is dominant

which results in Z(k) � jk. Thus, when we compareDself with the contribution from

the image sources, Dimage, we compare the imaginary part at the low frequency.
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For Dimage, we use the small hole approximation so that the image-source is re-

placed by the x-directed magnetic dipole moment M . The dipole moment may be

calculated using a general relation

Z
Sa
JmdS = �

Z
Sa
rr � JmdS = j!

Z
Sa
r�mdS = j!�M; (4:21)

which results in j!�M = 4�d2

3
ex located at x = 2na; n = 0;�1;�2; � � � and y =

2mb; m = 0;�1;�2; � � �, excluding the origin.
In order to calculate the magnetic �eld due to all image dipoles [9], it may be

convenient to use the Hertzian potential of magnetic type, �. Since the magnetic

dipole moment is x-directed, � has only an x component which satis�es the wave

equation

r2�x + k2�x = �M and Hx = k2�x +
@2�x

@x2
: (4:22)

For a row of dipoles located at y = �4mb, m = 0; 1; 2; � � �, the potential becomes

�1 =
M

4�

m=1X
m=�1

exp
h
�jk

q
x2 + (y � 4mb)2 + z2

i
q
x2 + (y � 4mb)2 + z2

: (4:23)

For this in�nite sum, we use Poisson's sum formula de�ned as

1X
n=�1

f(n�) =
1

�

1X
n=�1

F (
2n�

�
); F (!) =

Z 1

�1
f(t)ej!tdt: (4:24)

The required Fourier transformation is the integral of the type

I =
Z 1

�1
ejqu

e�jk
p
x2+(y�u)2q

x2 + (y � u)2
du

= ejqy
Z 1

�1
ejqz

e�jk
p
x2+z2

p
x2 + z2

dz

= ejqy
Z 1

�1
e�x(q cosh �+k sinh�)d�

= ejqy
Z 1

�1
e�x
p
q2�k2 cosh(�+ )d�

= 2ejqyK0[
q
q2 � k2x]; (4.25)
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where K0(x) is the modi�ed Bessel function of the second kind.

Thus, �1 becomes

�1 =
M

8�b

(
K0[jk

p
x2 + z2] + 2

m=1X
m=1

cos
m�y

2b
K0[�0m

p
x2 + z2]

)
; (4:26)

where �0m = [(m�=2b)2 � k2].

The potential arising from all the image dipoles is obtained by replacing x by

x� 2na in Eq. (4.26). Excluding the contribution from the dipole at the origin,

�2 =
M

8�b

1X
n=�1

0
K0[jk

q
(x� 2na)2 + z2]

+
M

4�b

1X
n=1

1X
m=1

cos
m�y

2b
K0[�0m

q
(x� 2na)2 + z2]

+
M

2�

1X
m=1

exp
h
�jk

q
x2 + (y � 4mb)2 + z2

i
q
x2 + (y � 4mb)2 + z2

: (4.27)

The �rst term is the contribution from the dipoles on the x-axis excluding the origin,

the second term is from the dipoles not on the axis, and the third term is from the

dipoles on the y-axis excluding the origin.

Since the evaluation of Hx involves derivatives with respect to x only, we may

place y and z equal to zero which results in

�3 =
M

8�b

1X
n=�1

0
K0[jkjx� 2naj] + M

4�b

1X
n=1

1X
m=1

K0[�0mjx� 2naj]

+
M

2�

1X
m=1

exp
h
�jk

q
x2 + (4mb)2

i
q
x2 + (4mb)2

: (4.28)

Assuming a low frequency in the range where �0m is real, we may neglect the

second term as K0(x) decreases exponentially when x is real. But the �rst series

converges very slowly so that we transform the series into the form suitable for using
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Poisson's sum formula,

M

8�b

1X
n=1

K0[jkjx� 2naj]� M

8�b
K0[jkjxj]: (4:29)

A necessary integral is1

Z 1

�1
ejquK0[jk

q
(x� u)2 + z2]du =

�p
q2 � k2

ejqx�z
p
q2�k2 (4:30)

from which we obtain

M

8�b

1X
n=�1

K0[jkjx� 2naj] = M

16ab

ej
n�
a
x

�0n
; (4:31)

where �0n =
q
(n�=a)2 � k2.

The �nal expression for �x becomes

�x =
M

16ab

1X
n=�1

ej
n�
a
x

�0n
� M

8�b
K0[jkjxj] + M

2�

1X
m=1

exp
h
�jk

q
x2 + (4mb)2

i
q
x2 + (4mb)2

: (4:32)

For the �eld, Hx, we need @2�x=@x
2 which is given by

@2�x

@x2
= � M

16ab

1X
n=�1

�
n�

a

�2 ej
n�
a
x

�0n
+
Mk2

8�b

"
K0(jkx) +

K1(jkx)

jkx

#

+
M

2�

1X
m=1

e�jkrm

rm

"
jkx

r2m
+

2x

r3m
� k2x

rm
+
jkx

rm
�
�
jk +

1

rm

� 
1

rm
� x2

r3m

!#
;

where rm =
q
x2 + (4mb)2.

Thus, Hx at the origin becomes

Hx = k2�x +
@2�x

@x2

= � M

16ab

1X
n=�1

�0ne
j n�
a
x +

Mk2

8�b

K1(jkx)

jkx

+
M

2�

"
k2

1X
1

e�jk4mb

4mb
�

1X
1

e�jk4mb

4mb

 
jk

4mb
+

1

(4mb)2

!#
: (4.33)

1See reference [13], p. 736.
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Necessary formulas in evaluating the various geometric series in Eq. (4.33) are given

in Table 4.1.

If �0n is approximately taken to be n�=a� k2a=2�n, the �rst series has the dom-

inant part

�M

8ab

1X
n=1

ej
n�
a
x

 
n�

a
� ak2

2�n

!
� j

M

16ab
k

which is readily summed to give

M

8�b

"
j

 
�k2

4
� �k

2a

!
� k2

2
ln 2 sin

�x

2a
+

1

x2

#
;

plus a correction part

�M

8ab

1X
n=1

 
�0n � n�

a
+
ak2

2�n

!
:

Thus the �rst series becomes

M

8�b

"
j

 
k2

4
� �k

2a

!
� k2

2
ln 2 sin

�x

2a
+

1

x2
� �

a

1X
n=1

(� � �)
#
: (4:34)

For small x, the second term in Hx becomes

M

8�b

"
k2

4
(2
 � 1) +

k2

2
ln

 
jkx

2

!
� 1

x2

#
; (4:35)

where 
 = 0:577 � � � is Euler's constant. We notice that the singularity in x vanishes

as x goes to zero.

The third series can be summed to give

M

8�b

"
k2

2
(ln 4kb � 2 ln 2 sin 2kb)� k2

4
� b2k4

6
+ j

 
4bk3

3
� �k2

4

!#
: (4:36)

Finally, Hx at the origin is given as

Re Hx =
M

8�b

"
(ln 4kb� 2 ln 2 sin 2kb + 
 � 1)

k2

2
� b2

6
k4 � �

a

1X
n=1

(� � �)
#
;

Im Hx = � M

8�b

 
�

2a
k � 4b

3
k3
!
;
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P1
1 ejnx ejx

1�ejx = �1
2
+ j

2
cot x

2
; 0 < x < �

P1
1 nejnx �1

4
csc2 x

2
= � 1

x2

�
1 + x2

3
+ 87x4

2880
+ � � �

�
; 0 < x < �

P1
1

ejnx

n
� ln(1 � ejx) = � ln 2 sin x

2
+ j ��x

2
; 0 < x < 2�

P1
1

ejnx

n2
�2

6
� x

4
(2� � x)� j

�
x lnx� x� x3

72
� � �
�
; 0 < x < 2�

P1
1

ejnx

n3
j
�
�2x
6 � �x2

4 + x3

12

�
+
�
x2

2 lnx� 3x2

4 � x4

288 � � � �
�
+
P1
n=1

1
n3
; 0 < x < 2�

P1
1

1
n2

�2

6

P1
1

1
n3

1:202056903

Table 4.1: Geometric Series

which is valid for low frequencies.

With this �eld, we obtain

Im Dimage ' ��
2d2

9Z0

 
d

b

!
�; � = kd: (4:37)

Comparing this with Dself , we see that the contribution to the impedance from

image sources is negligible in the low frequency range if the hole size is small compared

with the waveguide dimension, which is often the case in a typical accelerator beam

pipe.

Thus, for the hole in a rectangular waveguide, we use the same analytic formulas

obtained for the impedance of a hole in an in�nite screen except that the source �eld

appearing in the formula, Eq. (3.56), must be evaluated in the waveguide which is

shown in Eq. (4.11).
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4.4 Comparison with Numerical Results

In order to verify our analytical results, we compare them with the numerical results

from MAFIA-T3 which is a 3-D wake potential program. As mentioned in Chapter

1, MAFIA-T3 simply calculates the wake potential of the charge distributed in space,

i.e., bunch potential. It assumes a bunch of charged particles in Gaussian distribution

moving with velocity equal to the speed of light.

One of the geometries used in the MAFIA-T3 simulation is shown in Fig. 4.3

where we use a waveguide of width 2a = 2 cm, height 2b = 1 cm, the radius of a hole

d = 4 mm, and thickness of a hole plane t = 1 mm. Although our method has been

developed for a hole in a zero thickness plane, the numerical program cannot handle

zero thickness.

The corresponding bunch potential together with the Gaussian bunch shape are

shown in Fig. 4.4. We observe that the wake potential has a long tail similar to a

damped harmonic oscillator. Such a long range wake potential results in an impedance

with narrow bandwidth at a well-de�ned resonant frequency. Resonance phenomena

are expected because the induced �eld in the hole bounded by the circular conducting

edge will support a standing wave. When the hole size is reduced to 1 mm, wake

potential is quickly damped out after the bunch traverses the hole. Such a short-

range wake is shown in Fig. 4.5. Because of the short range in time, it will exhibit a

broadband impedance in the frequency domain.

With this wake potential, we have to perform a Fourier transform in order to

obtain the coupling impedance. The �rst step is to calculate V (!) which is the direct

Fourier transform of bunch potential from MAFIA-T3. For d = 4 mm, the result is
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shown in Fig. 4.6.

After this step, we can obtain the coupling impedance by

Z(!) =
V (!)

I(!)
; I(!) = exp

�
�1
2
(!�z=c)

2
�
; (4:38)

where I(!) is the Fourier transform of the Gaussian bunch with rms bunch length �z.

In practice, Z(!) can be computed only up to some limiting frequency because of

the exponential factor in the equation. We choose the limiting frequency to be the

one for which the exponential factor is �ve. Results for a hole of radius 4 mm are

presented in Fig. 4.7 showing the resonance behavior with sharp peaks.

As a general rule, three-dimensional mesh programs such as MAFIA-T3 require

a large amount of CPU time and a considerable memory size. In order to reduce the

number of meshes, we take advantage of the symmetry in geometry. For example,

instead of using full geometry as shown in Fig. 4.3 and running the program once

with the boundary condition,

tangential electric �eld Ek = 0 on the guide walls;

we may use only the bottom half of the geometry with two separate boundary condi-

tions, Ek = 0 and Hk = 0 on the plane of the hole (symmetry plane). By doing this,

we can save both the number of meshes and the CPU time.

Three di�erent results, one using full geometry and the other two using half ge-

ometry with Ek = 0 or Hk = 0 are shown in Fig. 4.8. We notice that the impedance

from the Ek = 0 boundary condition is completely negligible. In fact, if the thickness

becomes in�nitesimal, its impedance should be zero. Thus, by utilizing the symmetry

con�guration, we only use half geometry with boundary condition Hk = 0 and divide

the result by a factor of two in order to achieve the same result as the one from full
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geometry. All results from MAFIA-T3 calculations shown in the later �gures were

obtained by this method.

We compare the coupling impedance from the variational method and fromMAFIA-

T3 simulations for the holes with radius 1 mm, 2 mm, 4 mm. The result for the hole

with radius 1 mm is shown in Fig. 4.9. Since the ratio d=b = 0:2 is small, our vari-

ational result, based on the assumption that the interaction between the hole and

waveguide is small, is expected to be in good agreement with the numerical result

which includes the e�ect of waveguide structure. From the MAFIA-T3 results, we

�nd that the resonance occurs at the frequency kd = 1:8. The variational result shows

the resonance at kd = 1:35. Although the predictions of resonant frequency from the

two methods do not agree, results indicate that the resonance behavior is a property

of the hole because the frequency of the dominant propagating mode is 16 GHz for

the TM11 mode, which is far below the resonant frequency. We also observe that the

variational result at the low frequency range is approximately a factor two larger than

the numerical one. This may be explained as the thickness e�ect. Gluckstern [11] has

shown that the coupling impedance of a hole in an in�nite screen with �nite thickness

is reduced by a certain factor, which depends on the ratio t=d, compared to one in a

zero-thickness screen. His result shows that the reduction factor for t=d = 1 is 0.567.

If we include this factor in the variational result, we have a better agreement with

the numerical one, as shown in Fig. 4.10. In this comparison we should note that, if

the hole size is small compared with the waveguide dimension, the characteristics of

coupling impedance can be explained by the consideration of a hole only.

For the hole with radius 2 mm, the numerical result presented in Fig. 4.11 exhibits

noisy peaks which, we believe, indicate the e�ects of the waveguide. However, its well-
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de�ned envelope shows the behavior of a broadband resonator with the resonance at

kd = 1:8, the same as the impedance for radius 1 mm. Except for the location of the

resonant frequency, the result from the variational method shows good agreement in

magnitude. The reduction factor of 0.61 due to the thickness e�ect for t=d = 0:5 is

included in the variational result.

An interesting behavior is observed from the numerical results for the hole with

radius 4mm. Since the ratio of a hole radius and waveguide half width is compa-

rable, the waveguide e�ect may not be negligible any more. The result in Fig. 4.12

shows a strong interaction between hole and waveguide at the frequency of 16 GHz.

It corresponds to a dominant propagating mode of TM11. TEmn modes are not im-

portant because they do not contribute to the longitudinal coupling impedance. The

reduction factor 0.70 for t=d = 0:25 is taken into account in the variational result.

We have shown that the results from two di�erent methods are in good agreement

when the hole is small compared with the waveguide dimension. It indicates that,

for a small hole, the e�ect from waveguide structure is minor because our variational

method does not take into account such an e�ect. We also �nd that the thickness

e�ect is not negligible unless t=d << 1.
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Figure 4.3: Geometry used in MAFIA-T3 simulation.
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Figure 4.4: Bunch potential from MAFIA-T3 simulation for the hole with radius 4
mm.
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Figure 4.5: Bunch potential from MAFIA-T3 simulation for the hole with radius 1
mm.
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Figure 4.6: Fourier transform of bunch potential from MAFIA-T3 simulation for the
hole with radius 4 mm.
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Figure 4.7: Coupling impedance of a point charge for the hole with radius 4 mm.
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Figure 4.8: Impedance calculation using the symmetry. Solid line from full geometry,
dashed line from half geometry with Ek = 0 and dot-dashed line from half geometry
with Hk = 0.
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Figure 4.9: Coupling impedance of the hole with radius 1 mm. Solid line from the
variational calculation and dashed line from MAFIA-T3 simulation.
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Figure 4.10: Coupling impedance of the hole with radius 1 mm including thickness
e�ect. Solid line from the variational calculation and dashed line from MAFIA-T3
simulation.

93



Figure 4.11: Coupling impedance of the hole with radius 2 mm. Solid line from the
variational calculation and dashed line from MAFIA-T3 simulation.
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Figure 4.12: Coupling impedance of the hole with radius 4 mm. Solid line from the
variational calculation and dashed line from MAFIA-T3 simulation.
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Chapter 5

Summary and Conclusion

In this work, we have derived analytic formulas using a variational method for the

coupling impedance of a hole in an in�nite screen and in a rectangular waveguide.

The waveguide is considered as a model geometry resembling a real accelerator beam

pipe. Utilizing Bethe's solution for the tangential electric �eld as our assumed �eld

in the hole, we have shown that the coupling impedance can be expressed as a sum of

�nite functional series. The functions appearing in the formula are all well tabulated

[1], enabling us to evaluate the numerical values readily.

When we compare our variational formula for the impedance with a well-known

low frequency formula, we �nd that the two results agree.

Finally we have compared our variational results with the impedance obtained by

the Fourier transform of the wake potential data from the program MAFIA-T3. We

have shown a good qualitative agreement between two di�erent methods in a wide

frequency range.

Although one can in principle use MAFIA-T3 to calculate the impedance for a

realistic accelerator beam pipe with holes, it will be very di�cult to interpret or

to understand the numerical data. In particular, when we try to parameterize the
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impedance with a model, for example the broadband resonator model, we may not

know whether the exact shape of the beam pipe is important or not. If important,

we must include a beam pipe dimension as a parameter in order to �t the numerical

data. But we simply cannot answer such questions from numerical results alone.

From the analytical treatment presented in this work, we have shown that impor-

tant parameters such as the resonant frequency and the bandwidth of resonance peak

can be derived as functions of the dimensionless quantity kd, where k is the free-space

wave number and d is the radius of a hole. Since these two parameters together with

the slope of impedance at low frequency are enough to describe a resonator, our �nd-

ings are very useful in understanding a complicated behavior of impedance obtained

by numerical programs.

In conclusion, we have raised the treatment of the hole-coupling problem from the

analysis valid in the low frequency range to one valid in a wide range of frequencies.

By doing so we have succeeded in enlarging our understanding of the hole-coupling

problem.

As a further investigation, we may continue to develop a semi-analytical method

for the estimate of the coupling impedance of an arbitrarily shaped aperture in a

realistic beam pipe. This e�ort may have dual purposes. First, it can be used to

verify the purely analytical result, especially the one from an approximate method

such as a variational method which we considered in this work. Secondly, it may

enable us to calculate the impedance without a severe requirement on computer time

and memory which often limits the usefulness of the purely numerical method such

as the computer code MAFIA-T3.
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